A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q7
CAIE Further Paper 2 2022 June — Question 7
Exam Board
CAIE
Module
Further Paper 2 (Further Paper 2)
Year
2022
Session
June
Topic
Complex numbers 2
7
Use de Moivre's theorem to show that $$\operatorname { cosec } 7 \theta = \frac { \operatorname { cosec } ^ { 7 } \theta } { 7 \operatorname { cosec } ^ { 6 } \theta - 56 \operatorname { cosec } ^ { 4 } \theta + 112 \operatorname { cosec } ^ { 2 } \theta - 64 }$$
Hence obtain the roots of the equation $$x ^ { 7 } - 14 x ^ { 6 } + 112 x ^ { 4 } - 224 x ^ { 2 } + 128 = 0$$ in the form \(\operatorname { cosec } q \pi\), where \(q\) is rational.
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
10
Q7
Q8