Modulus and argument calculations

A question is this type if and only if it asks to find the modulus and/or argument of a complex expression (quotient, product, power) using properties of modulus and argument.

8 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
CAIE P3 2010 June Q8
9 marks Standard +0.8
8 The variable complex number \(z\) is given by $$z = 1 + \cos 2 \theta + i \sin 2 \theta$$ where \(\theta\) takes all values in the interval \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\).
  1. Show that the modulus of \(z\) is \(2 \cos \theta\) and the argument of \(z\) is \(\theta\).
  2. Prove that the real part of \(\frac { 1 } { z }\) is constant.
CAIE P3 2023 June Q5
6 marks Standard +0.3
5 The complex number \(2 + y \mathrm { i }\) is denoted by \(a\), where \(y\) is a real number and \(y < 0\). It is given that \(\mathrm { f } ( a ) = a ^ { 3 } - a ^ { 2 } - 2 a\).
  1. Find a simplified expression for \(\mathrm { f } ( a )\) in terms of \(y\).
  2. Given that \(\operatorname { Re } ( \mathrm { f } ( a ) ) = - 20\), find \(\arg a\).
CAIE P3 2023 June Q11
9 marks Standard +0.8
11 The complex number \(z\) is defined by \(z = \frac { 5 a - 2 \mathrm { i } } { 3 + a \mathrm { i } }\), where \(a\) is an integer. It is given that \(\arg z = - \frac { 1 } { 4 } \pi\).
  1. Find the value of \(a\) and hence express \(z\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. Express \(z ^ { 3 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Give the simplified exact values of \(r\) and \(\theta\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2024 November Q5
4 marks Moderate -0.3
5
  1. The complex number \(u\) is given by $$u = \frac { \left( \cos \frac { 1 } { 7 } \pi + i \sin \frac { 1 } { 7 } \pi \right) ^ { 4 } } { \cos \frac { 1 } { 7 } \pi - i \sin \frac { 1 } { 7 } \pi }$$ Find the exact value of \(\arg u\).
  2. The complex numbers \(u\) and \(u ^ { * }\) are plotted on an Argand diagram. Describe the single geometrical transformation that maps \(u\) onto \(u ^ { * }\) and state the exact value of \(\arg u ^ { * }\).
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-06_2715_35_110_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-07_588_869_255_603} The variables \(x\) and \(y\) satisfy the equation \(a y = b ^ { x }\), where \(a\) and \(b\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points ( \(0.50,2.24\) ) and ( \(3.40,8.27\) ), as shown in the diagram. Find the values of \(a\) and \(b\). Give each value correct to 1 significant figure.
Edexcel FP2 2013 June Q2
6 marks Moderate -0.8
2. $$z = 5 \sqrt { } 3 - 5 i$$ Find
  1. \(| z |\),
  2. \(\arg ( z )\), in terms of \(\pi\). $$w = 2 \left( \cos \frac { \pi } { 4 } + i \sin \frac { \pi } { 4 } \right)$$ Find
  3. \(\left| \frac { w } { z } \right|\),
  4. \(\quad \arg \left( \frac { w } { z } \right)\), in terms of \(\pi\).
OCR MEI FP2 2008 June Q2
18 marks Standard +0.8
2 You are given the complex numbers \(z = \sqrt { 32 } ( 1 + \mathrm { j } )\) and \(w = 8 \left( \cos \frac { 7 } { 12 } \pi + \mathrm { j } \sin \frac { 7 } { 12 } \pi \right)\).
  1. Find the modulus and argument of each of the complex numbers \(z , z ^ { * } , z w\) and \(\frac { z } { w }\).
  2. Express \(\frac { z } { w }\) in the form \(a + b \mathrm { j }\), giving the exact values of \(a\) and \(b\).
  3. Find the cube roots of \(z\), in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  4. Show that the cube roots of \(z\) can be written as $$k _ { 1 } w ^ { * } , \quad k _ { 2 } z ^ { * } \quad \text { and } \quad k _ { 3 } \mathrm { j } w ,$$ where \(k _ { 1 } , k _ { 2 }\) and \(k _ { 3 }\) are real numbers. State the values of \(k _ { 1 } , k _ { 2 }\) and \(k _ { 3 }\).
AQA Further Paper 2 Specimen Q1
1 marks Easy -1.8
1 Given that \(z _ { 1 } = 4 e ^ { \mathrm { i } \frac { \pi } { 3 } }\) and \(z _ { 2 } = 2 e ^ { \mathrm { i } \frac { \pi } { 4 } }\)
state the value of \(\arg \left( \frac { z _ { 1 } } { z _ { 2 } } \right)\)
Circle your answer.
[0pt] [1 mark]
\(\frac { \pi } { 12 }\)
\(\frac { 4 } { 3 }\)
\(\frac { 7 \pi } { 12 }\)
2
Edexcel CP2 2021 June Q1
5 marks Moderate -0.3
  1. Given that
$$\begin{aligned} z _ { 1 } & = 3 \left( \cos \left( \frac { \pi } { 3 } \right) + \mathrm { i } \sin \left( \frac { \pi } { 3 } \right) \right) \\ z _ { 2 } & = \sqrt { 2 } \left( \cos \left( \frac { \pi } { 12 } \right) - \mathrm { i } \sin \left( \frac { \pi } { 12 } \right) \right) \end{aligned}$$
  1. write down the exact value of
    1. \(\left| Z _ { 1 } Z _ { 2 } \right|\)
    2. \(\arg \left( \mathrm { z } _ { 1 } \mathrm { z } _ { 2 } \right)\) Given that \(w = z _ { 1 } z _ { 2 }\) and that \(\arg \left( w ^ { n } \right) = 0\), where \(n \in \mathbb { Z } ^ { + }\)
  2. determine
    1. the smallest positive value of \(n\)
    2. the corresponding value of \(\left| w ^ { n } \right|\)