6 The set \(S\) consists of the following four complex numbers.
\(\begin{array} { l l l l } \sqrt { 3 } + \mathrm { i } & - \sqrt { 3 } - \mathrm { i } & 1 - \mathrm { i } \sqrt { 3 } & - 1 + \mathrm { i } \sqrt { 3 } \end{array}\)
For \(z _ { 1 } , z _ { 2 } \in S\), the binary operation \(\bigcirc\) is defined by \(z _ { 1 } \bigcirc z _ { 2 } = \frac { 1 } { 4 } ( 1 + i \sqrt { 3 } ) z _ { 1 } z _ { 2 }\).
- Complete the Cayley table for \(( S , \bigcirc )\) given in the Printed Answer Booklet.
- Verify that ( \(S , \bigcirc\) ) is a group.
- State the order of each element of \(( S , \bigcirc )\).
- Write down the only proper subgroup of ( \(S , \bigcirc\) ).
- Explain why ( \(S , \bigcirc\) ) is a cyclic group.
- List all possible generators of \(( S , \bigcirc )\).