Edexcel
FP2
2003
June
Q9
3 marks
Moderate -0.8
9.
$$z = 4 \left( \cos \frac { \pi } { 4 } + i \sin \frac { \pi } { 4 } \right) , \text { and } \boldsymbol { w } = 3 \left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right)$$
Express zw in the form \(r ( \cos \theta + \mathrm { i } \sin \theta ) , r > 0 , - \pi < \theta < \pi\).
Edexcel
FP2
2003
June
Q14
14 marks
Standard +0.3
14. (a) Find the value of \(\lambda\) for which \(\lambda x \cos 3 x\) is a particular integral of the differential equation
$$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 9 y = - 12 \sin 3 x$$
(b) Hence find the general solution of this differential equation.(4)
The particular solution of the differential equation for which \(\boldsymbol { y } = \mathbf { 1 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathbf { 2 }\) at \(\boldsymbol { x } = \mathbf { 0 }\), is \(\boldsymbol { y } = \mathbf { g } ( \boldsymbol { x } )\).
(c) Find \(\mathrm { g } ( x )\).
(d) Sketch the graph of \(y = g ( x ) , 0 \leq x \leq \pi\).
(2)
\section*{15.}
\section*{Figure 1}
Figure 1 shows a sketch of the cardioid \(C\) with equation \(r = a ( 1 + \cos \theta ) , - \pi < \theta \leq \pi\). Also shown are the tangents to \(C\) that are parallel and perpendicular to the initial line. These tangents form a rectangle WXYZ.
\includegraphics[max width=\textwidth, alt={}, center]{141c7b1b-4236-4433-84af-04fa9baa3d96-5_407_782_315_1142}
(a) Find the area of the finite region, shaded in Fig. 1, bounded by the curve \(C\).
(b) Find the polar coordinates of the points \(A\) and \(B\) where \(W Z\) touches the curve \(C\).
(c) Hence find the length of \(W X\).
Given that the length of \(\boldsymbol { W } \boldsymbol { Z }\) is \(\frac { 3 \sqrt { 3 } a } { 2 }\),
(d) find the area of the rectangle \(W X Y Z\).
A heart-shape is modelled by the cardioid \(C\), where \(\boldsymbol { a } = \mathbf { 1 0 ~ c m }\). The heart shape is cut from the rectangular card WXYZ, shown in Fig. 1.
(e) Find a numerical value for the area of card wasted in making this heart shape.
8. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is defined by
$$w = \frac { z + 1 } { i z - 1 } , \quad z \neq - i$$
where \(z = x + \mathrm { i } y , w = u + \mathrm { i } v\) and \(x , y , u\) and \(v\) are real.
\(T\) transforms the circle \(| z | = 1\) in the \(z\)-plane onto a straight line \(L\) in the \(w\)-plane.
(a) Find an equation of \(L\) giving your answer in terms of \(u\) and \(v\).
(b) Show that \(T\) transforms the line \(\operatorname { Im } z = 0\) in the \(z\)-plane onto a circle \(C\) in the \(w\)-plane, giving the centre and radius of this circle.
(c) On a single Argand diagram sketch \(L\) and \(C\).
Question: Solve
$$x ^ { 5 } = - ( 9 \sqrt { 3 } ) i$$
OCR
FP3
2008
January
Q4
8 marks
Standard +0.8
4 The integrals \(C\) and \(S\) are defined by
$$C = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \cos 3 x \mathrm {~d} x \quad \text { and } \quad S = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \sin 3 x \mathrm {~d} x$$
By considering \(C + \mathrm { i } S\) as a single integral, show that
$$C = - \frac { 1 } { 13 } \left( 2 + 3 \mathrm { e } ^ { \pi } \right) ,$$
and obtain a similar expression for \(S\).
(You may assume that the standard result for \(\int \mathrm { e } ^ { k x } \mathrm {~d} x\) remains true when \(k\) is a complex constant, so that \(\left. \int \mathrm { e } ^ { ( a + \mathrm { i } b ) x } \mathrm {~d} x = \frac { 1 } { a + \mathrm { i } b } \mathrm { e } ^ { ( a + \mathrm { i } b ) x } .\right)\)