Edexcel FP2 2013 June — Question 6

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJune
TopicComplex numbers 2

6. The complex number \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), where \(\theta\) is real.
  1. Use de Moivre's theorem to show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$ where \(n\) is a positive integer.
  2. Show that $$\cos ^ { 5 } \theta = \frac { 1 } { 16 } ( \cos 5 \theta + 5 \cos 3 \theta + 10 \cos \theta )$$
  3. Hence find all the solutions of $$\cos 5 \theta + 5 \cos 3 \theta + 12 \cos \theta = 0$$ in the interval \(0 \leqslant \theta < 2 \pi\)