| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | June |
| Topic | Complex numbers 2 |
6 Use de Moivre's theorem to express \(\cot 7 \theta\) in terms of \(\cot \theta\).
Use the equation \(\cot 7 \theta = 0\) to show that the roots of the equation
$$x ^ { 6 } - 21 x ^ { 4 } + 35 x ^ { 2 } - 7 = 0$$
are \(\cot \left( \frac { 1 } { 14 } k \pi \right)\) for \(k = 1,3,5,9,11,13\), and deduce that
$$\cot ^ { 2 } \left( \frac { 1 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 3 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 5 } { 14 } \pi \right) = 7$$