Roots of unity with trigonometric identities

Questions that use specific roots of unity (like ω = e^(2πi/n)) to prove trigonometric identities or exact values involving sums and products of cosines or sines at rational multiples of π.

8 questions · Challenging +1.1

Sort by: Default | Easiest first | Hardest first
CAIE FP1 2011 November Q11 EITHER
Challenging +1.8
Let \(\omega = \cos \frac { 1 } { 5 } \pi + \mathrm { i } \sin \frac { 1 } { 5 } \pi\). Show that \(\omega ^ { 5 } + 1 = 0\) and deduce that $$\omega ^ { 4 } - \omega ^ { 3 } + \omega ^ { 2 } - \omega = - 1$$ Show further that $$\omega - \omega ^ { 4 } = 2 \cos \frac { 1 } { 5 } \pi \quad \text { and } \quad \omega ^ { 3 } - \omega ^ { 2 } = 2 \cos \frac { 3 } { 5 } \pi$$ Hence find the values of $$\cos \frac { 1 } { 5 } \pi + \cos \frac { 3 } { 5 } \pi \quad \text { and } \quad \cos \frac { 1 } { 5 } \pi \cos \frac { 3 } { 5 } \pi$$ Find a quadratic equation having roots \(\cos \frac { 1 } { 5 } \pi\) and \(\cos \frac { 3 } { 5 } \pi\) and deduce the exact value of \(\cos \frac { 1 } { 5 } \pi\).
OCR Further Pure Core 1 2019 June Q9
12 marks Challenging +1.2
9 In this question you must show detailed reasoning.
You are given the complex number \(\omega = \cos \frac { 2 } { 5 } \pi + \mathrm { i } \sin \frac { 2 } { 5 } \pi\) and the equation \(z ^ { 5 } = 1\).
  1. Show that \(\omega\) is a root of the equation.
  2. Write down the other four roots of the equation.
  3. Show that \(\omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } = - 1\).
  4. Hence show that \(\left( \omega + \frac { 1 } { \omega } \right) ^ { 2 } + \left( \omega + \frac { 1 } { \omega } \right) - 1 = 0\).
  5. Hence determine the value of \(\cos \frac { 2 } { 5 } \pi\) in the form \(a + b \sqrt { c }\) where \(a , b\) and \(c\) are rational numbers to be found.
AQA FP2 2010 January Q8
12 marks Standard +0.8
8
    1. Show that \(\omega = \mathrm { e } ^ { \frac { 2 \pi \mathrm { i } } { 7 } }\) is a root of the equation \(z ^ { 7 } = 1\).
    2. Write down the five other non-real roots in terms of \(\omega\).
  1. Show that $$1 + \omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } + \omega ^ { 5 } + \omega ^ { 6 } = 0$$
  2. Show that:
    1. \(\quad \omega ^ { 2 } + \omega ^ { 5 } = 2 \cos \frac { 4 \pi } { 7 }\);
    2. \(\cos \frac { 2 \pi } { 7 } + \cos \frac { 4 \pi } { 7 } + \cos \frac { 6 \pi } { 7 } = - \frac { 1 } { 2 }\).
AQA FP2 2012 January Q8
14 marks Challenging +1.2
8
  1. Write down the five roots of the equation \(z ^ { 5 } = 1\), giving your answers in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta \leqslant \pi\).
  2. Hence find the four linear factors of $$z ^ { 4 } + z ^ { 3 } + z ^ { 2 } + z + 1$$
  3. Deduce that $$z ^ { 2 } + z + 1 + z ^ { - 1 } + z ^ { - 2 } = \left( z - 2 \cos \frac { 2 \pi } { 5 } + z ^ { - 1 } \right) \left( z - 2 \cos \frac { 4 \pi } { 5 } + z ^ { - 1 } \right)$$
  4. Use the substitution \(z + z ^ { - 1 } = w\) to show that \(\cos \frac { 2 \pi } { 5 } = \frac { \sqrt { 5 } - 1 } { 4 }\).
AQA FP2 2007 January Q6
12 marks Standard +0.8
6
  1. Find the three roots of \(z ^ { 3 } = 1\), giving the non-real roots in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta \leqslant \pi\).
  2. Given that \(\omega\) is one of the non-real roots of \(z ^ { 3 } = 1\), show that $$1 + \omega + \omega ^ { 2 } = 0$$
  3. By using the result in part (b), or otherwise, show that:
    1. \(\frac { \omega } { \omega + 1 } = - \frac { 1 } { \omega }\);
    2. \(\frac { \omega ^ { 2 } } { \omega ^ { 2 } + 1 } = - \omega\);
    3. \(\left( \frac { \omega } { \omega + 1 } \right) ^ { k } + \left( \frac { \omega ^ { 2 } } { \omega ^ { 2 } + 1 } \right) ^ { k } = ( - 1 ) ^ { k } 2 \cos \frac { 2 } { 3 } k \pi\), where \(k\) is an integer.
AQA FP2 2015 June Q8
9 marks Challenging +1.2
8 The complex number \(\omega\) is given by \(\omega = \cos \frac { 2 \pi } { 5 } + \mathrm { i } \sin \frac { 2 \pi } { 5 }\).
    1. Verify that \(\omega\) is a root of the equation \(z ^ { 5 } = 1\).
    2. Write down the three other non-real roots of \(z ^ { 5 } = 1\), in terms of \(\omega\).
    1. Show that \(1 + \omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } = 0\).
    2. Hence show that \(\left( \omega + \frac { 1 } { \omega } \right) ^ { 2 } + \left( \omega + \frac { 1 } { \omega } \right) - 1 = 0\).
  1. Hence show that \(\cos \frac { 2 \pi } { 5 } = \frac { \sqrt { 5 } - 1 } { 4 }\).
AQA Further Paper 1 2020 June Q6
9 marks Standard +0.8
6 Let \(w\) be the root of the equation \(z ^ { 7 } = 1\) that has the smallest argument \(\alpha\) in the interval \(0 < \alpha < \pi\) 6
  1. Prove that \(w ^ { n }\) is also a root of the equation \(z ^ { 7 } = 1\) for any integer \(n\). 6
  2. Prove that \(1 + w + w ^ { 2 } + w ^ { 3 } + w ^ { 4 } + w ^ { 5 } + w ^ { 6 } = 0\)
    6
  3. Show the positions of \(w , w ^ { 2 } , w ^ { 3 } , w ^ { 4 } , w ^ { 5 }\), and \(w ^ { 6 }\) on the Argand diagram below.
    [0pt] [2 marks]
    \includegraphics[max width=\textwidth, alt={}, center]{44e22a98-6424-4fb1-8a37-c965773cb7b6-08_835_898_1802_571} 6
  4. Prove that $$\cos \frac { 2 \pi } { 7 } + \cos \frac { 4 \pi } { 7 } + \cos \frac { 6 \pi } { 7 } = - \frac { 1 } { 2 }$$
OCR Further Pure Core 1 2021 June Q6
12 marks Challenging +1.2
6 In this question you must show detailed reasoning.
You are given the complex number \(\omega = \cos \frac { 2 } { 5 } \pi + i \sin \frac { 2 } { 5 } \pi\) and the equation \(z ^ { 5 } = 1\).
  1. Show that \(\omega\) is a root of the equation.
  2. Write down the other four roots of the equation.
  3. Show that \(\omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } = - 1\).
  4. Hence show that \(\left( \omega + \frac { 1 } { \omega } \right) ^ { 2 } + \left( \omega + \frac { 1 } { \omega } \right) - 1 = 0\).
  5. Hence determine the value of \(\cos \frac { 2 } { 5 } \pi\) in the form \(a + b \sqrt { c }\) where \(a , b\) and \(c\) are rational numbers to be found. Total Marks for Question Set 4: 38 \section*{Mark scheme} \section*{Marking Instructions} a An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed.
    b The following types of marks are available.
    M
    A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
    A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. B
    Mark for a correct result or statement independent of Method marks. \section*{E} A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
    c When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
    d The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'.
    e We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
    • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
    • When a value is not given in the paper accept any answer that agrees with the correct value to \(\mathbf { 3 ~ s } . \mathbf { f }\). unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
    Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
    Candidates using a value of \(9.80,9.81\) or 10 for \(g\) should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
    f Rules for replaced work and multiple attempts:
    • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
    • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
    • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
      g For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.
      If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
      h If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero.
    \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Abbreviations}
    Abbreviations used in the mark schemeMeaning
    dep*Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
    caoCorrect answer only
    oeOr equivalent
    rotRounded or truncated
    soiSeen or implied
    wwwWithout wrong working
    AGAnswer given
    awrtAnything which rounds to
    BCBy Calculator
    DRThis question included the instruction: In this question you must show detailed reasoning.
    \end{table}
    QuestionAnswerMarksAOGuidance
    \multirow[t]{2}{*}{3
  6. }
  7. \(\begin{aligned}5 \cosh x + 3 \sinh x = 4
    \Rightarrow 5 \left( \frac { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } { 2 } \right) + 3 \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { 2 } \right) = 4
    \Rightarrow 4 \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } = 4 \end{aligned}\)
    Alternatively: \(\begin{aligned}5 \cosh x + 3 \sinh x \equiv R \cosh ( x + \alpha )
    \text { where } R = \sqrt { 25 - 9 } = 4
    \tanh \alpha = \frac { 3 } { 5 } \Rightarrow \alpha = \tanh ^ { - 1 } \frac { 3 } { 5 } = \frac { 1 } { 2 } \ln \left( \frac { 1 + \frac { 3 } { 5 } } { 1 - \frac { 3 } { 5 } } \right) = \frac { 1 } { 2 } \ln 4 = \ln 2 \text { M1 A1 }
    \Rightarrow 4 \cosh ( x + \alpha ) = 4 \Rightarrow \cosh ( x + \alpha ) = 0
    \Rightarrow x = - \alpha = - \ln 2 \end{aligned}\)
    М13.1a
    Use of exponentials
    Multiply by \(\mathrm { e } ^ { x }\)
    Alternatively make cosh the subject, square and use Pythagoras to give quadratic in cosh
    Alternatively use compound angle formula
    [4]
    (b)DR \(\begin{aligned}\int _ { - 1 } ^ { 1 } ( 5 \cosh x + 3 \sinh x ) \mathrm { d } x = [ 5 \sinh x + 3 \cosh x ] _ { - 1 } ^ { 1 }
    = \left( 5 \frac { \mathrm { e } ^ { 1 } - \mathrm { e } ^ { - 1 } } { 2 } + 3 \frac { \mathrm { e } ^ { 1 } + \mathrm { e } ^ { - 1 } } { 2 } \right) - \left( 5 \frac { \mathrm { e } ^ { - 1 } - \mathrm { e } ^ { 1 } } { 2 } + 3 \frac { \mathrm { e } ^ { - 1 } + \mathrm { e } ^ { 1 } } { 2 } \right)
    = \left( 4 \mathrm { e } ^ { 1 } - \mathrm { e } ^ { - 1 } \right) - \left( 4 \mathrm { e } ^ { - 1 } - \mathrm { e } ^ { 1 } \right)
    = 5 \mathrm { e } - \frac { 5 } { \mathrm { e } } \end{aligned}\)М11.1Attempt at integral (i.e. one function changed)
    Alternatively:
    M1 convert (including possibly using result from (a))
    M1 integrate and use limits correctly
    \includegraphics[max width=\textwidth, alt={}]{ef967953-70b5-4dd1-a342-ad488b5fa79f-09_1333_2525_159_242}
    QuestionAnswerMarksAOGuidance
    4(b)\(\begin{aligned}\int _ { 1 / 6 } ^ { 1 / 2 } \frac { 1 } { ( 1 + 2 x ) \sqrt { x } } \mathrm {~d} x = \sqrt { 2 } \int _ { 1 / 6 } ^ { 1 / 2 } \frac { 1 } { ( 1 + 2 x ) \sqrt { 2 x } } \mathrm {~d} x
    = \sqrt { 2 } \left[ \tan ^ { - 1 } \sqrt { 2 x } \right] _ { 1 / 6 } ^ { 1 / 2 } = \sqrt { 2 } \left( \tan ^ { - 1 } 1 - \tan ^ { - 1 } \frac { 1 } { \sqrt { 3 } } \right)
    = \sqrt { 2 } \left( \frac { \pi } { 4 } - \frac { \pi } { 6 } \right) = \frac { \sqrt { 2 } } { 12 } \pi
    \text { So } k = \frac { \sqrt { 2 } } { 12 } \end{aligned}\)
    M1
    A1
    М1
    A1
    [4]
    3.1a
    1.1
    1.1
    1.1
    Get into form of (a). Ignore limits
    Correct form
    Use (a) and correct limits in correct order.
    ое
    Alternatively: \(\begin{aligned}\text { Let } u = \sqrt { x }
    \mathrm {~d} u = \frac { 1 } { 2 \sqrt { x } } \mathrm {~d} x \Rightarrow \mathrm {~d} x = 2 \sqrt { x } \mathrm {~d} u = 2 u \mathrm {~d} u
    \int _ { \frac { 1 } { 6 } } ^ { \frac { 1 } { 2 } } \frac { \sqrt { x } } { \left( x + 2 x ^ { 2 } \right) } \mathrm { d } x = \int _ { x = \frac { 1 } { 6 } } ^ { x = \frac { 1 } { 2 } } \frac { u } { \left( u ^ { 2 } + 2 u ^ { 4 } \right) } 2 u \mathrm {~d} u = 2 \int _ { x = \frac { 1 } { 6 } } ^ { x = \frac { 1 } { 2 } } \frac { 1 } { \left( 1 + 2 u ^ { 2 } \right) } \mathrm { d } u
    = \sqrt { 2 } \left[ \tan ^ { - 1 } u \sqrt { 2 } \right] _ { x = \frac { 1 } { 6 } } ^ { x = \frac { 1 } { 2 } }
    = \sqrt { 2 } \left[ \tan ^ { - 1 } \sqrt { 2 x } \right] _ { x = \frac { 1 } { 6 } } ^ { x = \frac { 1 } { 2 } } = \sqrt { 2 } \left( \tan ^ { - 1 } 1 - \tan ^ { - 1 } \frac { 1 } { \sqrt { 3 } } \right) = \sqrt { 2 } \left( \frac { \pi } { 4 } - \frac { \pi } { 6 } \right)
    = \frac { \pi \sqrt { 2 } } { 12 } \end{aligned}\)
    Make a substitution
    Get into correct form
    Use standard result with correct limits in correct order
    QuestionAnswerMarksAOGuidance
    5(a)\(\begin{aligned}\cosh x = \frac { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } { 2 } = \frac { \mathrm { e } ^ { 2 x } + 1 } { 2 \mathrm { e } ^ { x } }
    \Rightarrow \operatorname { sech } x = \frac { 2 \mathrm { e } ^ { x } } { \mathrm { e } ^ { 2 x } + 1 } \quad \text { AG } \end{aligned}\)
    М1
    A1
    [2]
    1.1
    2.1
    Use of \(\cosh x\) in exponentials
    (b)\(\begin{aligned}u = \mathrm { e } ^ { x } \Rightarrow \mathrm {~d} u = \mathrm { e } ^ { x } \mathrm {~d} x
    \Rightarrow \mathrm {~d} x = \frac { \mathrm { d } u } { u }
    \Rightarrow \int \operatorname { sech } x \mathrm {~d} x = \int \left( \frac { 2 \mathrm { e } ^ { x } } { \mathrm { e } ^ { 2 x } + 1 } \right) \mathrm { d } x
    = \int \frac { 2 u } { u ^ { 2 } + 1 } \cdot \frac { \mathrm {~d} u } { u }
    = 2 \tan ^ { - 1 } ( u ) + c = 2 \tan ^ { - 1 } \left( \mathrm { e } ^ { x } \right) + c
    \text { Alternatively: }
    u = \sinh x \Rightarrow \mathrm {~d} u = \cosh x \mathrm {~d} x
    \Rightarrow \int \operatorname { sech } x \mathrm {~d} x = \int \frac { 1 } { \cosh x } \cdot \frac { \mathrm {~d} u } { \cosh x } = \int \frac { \mathrm { d } u } { \cosh ^ { 2 } x }
    = \int \frac { \mathrm { d } u } { 1 + \sinh ^ { 2 } x } = = \int \frac { \mathrm { d } u } { 1 + u ^ { 2 } }
    = \tan ^ { - 1 } u + c
    = \tan ^ { - 1 } ( \sinh x ) + c
    \text { Alternatively: }
    \int \operatorname { sech } x \mathrm {~d} x = \int \frac { 2 \mathrm { e } ^ { x } } { \mathrm { e } ^ { 2 x } + 1 } \mathrm {~d} x
    \text { Let } \mathrm { e } ^ { x } = \tan u \Rightarrow \mathrm { e } ^ { x } \mathrm {~d} x = \sec ^ { 2 } u \mathrm {~d} u \Rightarrow \mathrm {~d} x = \frac { \sec ^ { 2 } u } { \tan u } \mathrm {~d} u
    \Rightarrow \int \operatorname { sech } x \mathrm {~d} x = \int \frac { 2 \tan u } { \tan ^ { 2 } u + 1 } \cdot \frac { \sec ^ { 2 } u } { \tan u } \mathrm {~d} u = 2 \int \mathrm {~d} u
    = 2 u + c
    = 2 \tan ^ { - 1 } \left( \mathrm { e } ^ { x } \right) + c \end{aligned}\)
    М1
    A1
    М1
    A1
    3.1aMust include \(c\)Allow absence of \(\mathrm { d } u\)
    QuestionAnswerMarksAOGuidance
    6(a)DR \(\begin{aligned}\omega = \cos \frac { 2 \pi } { 5 } + \mathrm { i } \sin \frac { 2 \pi } { 5 }
    \Rightarrow \omega ^ { 5 } = \left( \cos \frac { 2 \pi } { 5 } + \mathrm { i } \sin \frac { 2 \pi } { 5 } \right) ^ { 5 } = \cos 2 \pi + \mathrm { i } \sin 2 \pi = 1 + 0 \mathrm { i } = 1 \end{aligned}\)
    M1 A1
    [2]
    2.1 1.1Finding \(\omega ^ { 5 }\) AGUse of exponentials is satisfactory Could be argued backwards
    (b)\(\omega ^ { 2 } , \omega ^ { 3 } , \omega ^ { 4 } , 1\)
    B1
    [1]
    1.1
    Alternative:
    Roots are \(\cos \frac { 2 k \pi } { 5 } + \mathrm { i } \sin \frac { 2 k \pi } { 5 }\) for \(k = 2,3,4\)
    and 1 ( or \(k = 5\) )
    Exponentials satisfactory
    (c)
    DR \(\begin{aligned}\omega ^ { 5 } - 1 = 0
    \Rightarrow ( \omega - 1 ) \left( \omega ^ { 4 } + \omega ^ { 3 } + \omega ^ { 2 } + \omega + 1 \right) = 0
    \Rightarrow \omega ^ { 4 } + \omega ^ { 3 } + \omega ^ { 2 } + \omega = - 1 \end{aligned}\)
    Alternatively: \(1 + \omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } = \frac { 1 - \omega ^ { 5 } } { 1 - \omega } = \frac { 0 } { 1 - \omega }\)
    M1
    or \(\omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } = \omega \left( \frac { 1 - \omega ^ { 4 } } { 1 - \omega } \right) = \left( \frac { \omega - \omega ^ { 5 } } { 1 - \omega } \right) = \left( \frac { \omega - 1 } { 1 - \omega } \right) = - 1\) A1
    Alternatively:
    sum of roots \(= = - \frac { b } { a }\) where \(b = 0 \mathrm { M } 1 -\) needs
    explanation - i.e. coefficient of \(z ^ { 4 }\) term \(= 0\)
    Use equation and \(\omega\)
    AG
    QuestionAnswerMarksAOGuidance
    6(d)\(\begin{aligned}\mathbf { A G }
    \left( \omega + \frac { 1 } { \omega } \right) ^ { 2 } + \left( \omega + \frac { 1 } { \omega } \right) - 1 = \omega ^ { 2 } + 2 + \frac { 1 } { \omega ^ { 2 } } + \omega + \frac { 1 } { \omega } - 1
    = \frac { 1 } { \omega ^ { 2 } } \left( \omega ^ { 4 } + \omega ^ { 2 } + 1 + \omega ^ { 3 } + \omega \right) = 0
    \text { Since } \frac { 1 } { \omega ^ { 2 } } \neq 0 , \omega ^ { 4 } + \omega ^ { 2 } + 1 + \omega ^ { 3 } + \omega = 0
    \text { or from part (c) } \end{aligned}\)
    M1
    A1
    A1
    2.1
    1.1
    2.2a
    Multiply out
    Alternatively: \(\begin{aligned}\omega ^ { 4 } + \omega ^ { 3 } + \omega ^ { 2 } + \omega + 1 = 0
    \Rightarrow \omega ^ { 2 } \left( \omega ^ { 2 } + \omega + 1 + \frac { 1 } { \omega } + \frac { 1 } { \omega ^ { 2 } } \right) = 0
    \Rightarrow \omega ^ { 2 } \left( \left( \omega ^ { 2 } + 2 + \frac { 1 } { \omega ^ { 2 } } \right) + \left( \omega + \frac { 1 } { \omega } \right) + 1 - 2 \right) = 0
    \Rightarrow \omega ^ { 2 } \left( \left( \omega + \frac { 1 } { \omega } \right) ^ { 2 } + \left( \omega + \frac { 1 } { \omega } \right) - 1 \right) = 0
    \text { Since } \omega ^ { 2 } \neq 0 , \left( \omega + \frac { 1 } { \omega } \right) ^ { 2 } + \left( \omega + \frac { 1 } { \omega } \right) - 1 = 0 \quad \mathbf { A } \mathbf { 1 } \end{aligned}\)[3]
    For extraction of \(\omega ^ { 2 }\)
    For dealing with the 2
    QuestionAnswerMarksAOGuidance
    \multirow[t]{4}{*}{6}(e)\(\begin{aligned}\frac { 1 } { \omega } = \cos \frac { 2 \pi } { 5 } - i \sin \frac { 2 \pi } { 5 }
    \Rightarrow \left( \omega + \frac { 1 } { \omega } \right) = 2 \cos \frac { 2 \pi } { 5 } \end{aligned}\)B13.1a\(\omega + \frac { 1 } { \omega }\) may be seen in (d)
    \(\begin{aligned}\text { From (iii) solving quadratic: } \left( \omega + \frac { 1 } { \omega } \right) = \frac { - 1 \pm \sqrt { 5 } } { 2 }
    \Rightarrow 2 \cos \frac { 2 \pi } { 5 } = \frac { \sqrt { 5 } - 1 } { 2 } \Rightarrow \cos \frac { 2 \pi } { 5 } = \frac { \sqrt { 5 } - 1 } { 4 }
    = - \frac { 1 } { 4 } + \frac { \sqrt { 5 } } { 4 } \text { or } - \frac { 1 } { 4 } + \frac { 1 } { 4 } \sqrt { 5 } \text { or } - 0.25 + 0.25 \sqrt { 5 } \end{aligned}\)М13.1aBC
    A12.3For taking the valid value and presenting in correct form оеNo other forms acceptable
    [4]