A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q6
CAIE Further Paper 2 2020 November — Question 6
Exam Board
CAIE
Module
Further Paper 2 (Further Paper 2)
Year
2020
Session
November
Topic
Complex numbers 2
6
Use de Moivre's theorem to show that \(\sin ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta - 4 \cos 2 \theta + 3 )\).
Find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} \theta } + y \cot \theta = \sin ^ { 3 } \theta$$ for which \(y = 0\) when \(\theta = \frac { 1 } { 2 } \pi\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8