CAIE Further Paper 2 2020 November — Question 6

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2020
SessionNovember
TopicComplex numbers 2

6
  1. Use de Moivre's theorem to show that \(\sin ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta - 4 \cos 2 \theta + 3 )\).
  2. Find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} \theta } + y \cot \theta = \sin ^ { 3 } \theta$$ for which \(y = 0\) when \(\theta = \frac { 1 } { 2 } \pi\).