A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q7
OCR FP3 2015 June — Question 7
Exam Board
OCR
Module
FP3 (Further Pure Mathematics 3)
Year
2015
Session
June
Topic
Complex numbers 2
7
Use de Moivre's theorem to show that \(\tan 4 \theta \equiv \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta }\).
Hence find the exact roots of \(t ^ { 4 } + 4 \sqrt { 3 } t ^ { 3 } - 6 t ^ { 2 } - 4 \sqrt { 3 } t + 1 = 0\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8