De Moivre to derive tan/cot identities

A question is this type if and only if it asks to use De Moivre's theorem (often via binomial expansion of (z ± 1/z)) to derive identities for tan(nθ) or cot(nθ) in terms of tan θ or cot θ.

18 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2021 June Q4
7 marks Challenging +1.2
4 By considering the binomial expansions of \(\left( z + \frac { 1 } { z } \right) ^ { 5 }\) and \(\left( z - \frac { 1 } { z } \right) ^ { 5 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$\tan ^ { 5 } \theta = \frac { \sin 5 \theta - \mathrm { a } \sin 3 \theta + \mathrm { b } \sin \theta } { \cos 5 \theta + \mathrm { a } \cos 3 \theta + \mathrm { b } \cos \theta }$$ where \(a\) and \(b\) are integers to be determined.
CAIE Further Paper 2 2023 June Q3
7 marks Challenging +1.2
3 By considering the binomial expansions of \(\left( z + \frac { 1 } { z } \right) ^ { 4 }\) and \(\left( z - \frac { 1 } { z } \right) ^ { 4 }\), where \(z = \cos \theta + i \sin \theta\), use de Moivre's theorem to show that $$\cot ^ { 4 } \theta = \frac { \cos 4 \theta + a \cos 2 \theta + b } { \cos 4 \theta - a \cos 2 \theta + b }$$ where \(a\) and \(b\) are integers to be determined.
OCR FP3 2007 January Q8
13 marks Challenging +1.2
8
  1. Use de Moivre's theorem to find an expression for \(\tan 4 \theta\) in terms of \(\tan \theta\).
  2. Deduce that \(\cot 4 \theta = \frac { \cot ^ { 4 } \theta - 6 \cot ^ { 2 } \theta + 1 } { 4 \cot ^ { 3 } \theta - 4 \cot \theta }\).
  3. Hence show that one of the roots of the equation \(x ^ { 2 } - 6 x + 1 = 0\) is \(\cot ^ { 2 } \left( \frac { 1 } { 8 } \pi \right)\).
  4. Hence find the value of \(\operatorname { cosec } ^ { 2 } \left( \frac { 1 } { 8 } \pi \right) + \operatorname { cosec } ^ { 2 } \left( \frac { 3 } { 8 } \pi \right)\), justifying your answer.
OCR FP3 2012 January Q8
12 marks
8
  1. Use de Moivre's theorem to prove that $$\tan 5 \theta \equiv \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta } .$$
  2. Solve the equation \(\tan 5 \theta = 1\), for \(0 \leqslant \theta < \pi\).
  3. Show that the roots of the equation $$t ^ { 4 } - 4 t ^ { 3 } - 14 t ^ { 2 } - 4 t + 1 = 0$$ may be expressed in the form \(\tan \alpha\), stating the exact values of \(\alpha\), where \(0 \leqslant \alpha < \pi\). \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE}
OCR FP3 2015 June Q7
9 marks Challenging +1.2
7
  1. Use de Moivre's theorem to show that \(\tan 4 \theta \equiv \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta }\).
  2. Hence find the exact roots of \(t ^ { 4 } + 4 \sqrt { 3 } t ^ { 3 } - 6 t ^ { 2 } - 4 \sqrt { 3 } t + 1 = 0\).
OCR FP3 2009 June Q7
14 marks Challenging +1.3
7
  1. Use de Moivre's theorem to prove that $$\tan 3 \theta \equiv \frac { \tan \theta \left( 3 - \tan ^ { 2 } \theta \right) } { 1 - 3 \tan ^ { 2 } \theta } .$$
  2. (a) By putting \(\theta = \frac { 1 } { 12 } \pi\) in the identity in part (i), show that \(\tan \frac { 1 } { 12 } \pi\) is a solution of the equation $$t ^ { 3 } - 3 t ^ { 2 } - 3 t + 1 = 0 .$$ (b) Hence show that \(\tan \frac { 1 } { 12 } \pi = 2 - \sqrt { 3 }\).
  3. Use the substitution \(t = \tan \theta\) to show that $$\int _ { 0 } ^ { 2 - \sqrt { 3 } } \frac { t \left( 3 - t ^ { 2 } \right) } { \left( 1 - 3 t ^ { 2 } \right) \left( 1 + t ^ { 2 } \right) } \mathrm { d } t = a \ln b$$ where \(a\) and \(b\) are positive constants to be determined.
CAIE FP1 2011 June Q11 EITHER
Challenging +1.3
Use de Moivre's theorem to prove that $$\tan 3 \theta = \frac { 3 \tan \theta - \tan ^ { 3 } \theta } { 1 - 3 \tan ^ { 2 } \theta }$$ State the exact values of \(\theta\), between 0 and \(\pi\), that satisfy \(\tan 3 \theta = 1\). Express each root of the equation \(t ^ { 3 } - 3 t ^ { 2 } - 3 t + 1 = 0\) in the form \(\tan ( k \pi )\), where \(k\) is a positive rational number. For each of these values of \(k\), find the exact value of \(\tan ( k \pi )\).
CAIE FP1 2014 June Q7
9 marks Challenging +1.2
7 Use de Moivre's theorem to show that $$\tan 5 \theta = \frac { 5 t - 10 t ^ { 3 } + t ^ { 5 } } { 1 - 10 t ^ { 2 } + 5 t ^ { 4 } }$$ where \(t = \tan \theta\). Deduce that the roots of the equation \(t ^ { 4 } - 10 t ^ { 2 } + 5 = 0\) are \(\pm \tan \frac { 1 } { 5 } \pi\) and \(\pm \tan \frac { 2 } { 5 } \pi\). Hence show that \(\tan \frac { 1 } { 5 } \pi \tan \frac { 2 } { 5 } \pi = \sqrt { } 5\).
CAIE FP1 2016 June Q6
9 marks Challenging +1.8
6 Use de Moivre's theorem to express \(\cot 7 \theta\) in terms of \(\cot \theta\). Use the equation \(\cot 7 \theta = 0\) to show that the roots of the equation $$x ^ { 6 } - 21 x ^ { 4 } + 35 x ^ { 2 } - 7 = 0$$ are \(\cot \left( \frac { 1 } { 14 } k \pi \right)\) for \(k = 1,3,5,9,11,13\), and deduce that $$\cot ^ { 2 } \left( \frac { 1 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 3 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 5 } { 14 } \pi \right) = 7$$
CAIE FP1 2017 June Q7
10 marks
7
  1. Use de Moivre's theorem to prove that $$\tan 4 \theta = \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta } .$$
  2. Hence find the solutions of the equation $$t ^ { 4 } - 4 t ^ { 3 } - 6 t ^ { 2 } + 4 t + 1 = 0$$ giving your answers in the form \(\tan k \pi\), where \(k\) is a rational number.
CAIE FP1 2010 November Q10
10 marks Challenging +1.3
10 By using de Moivre's theorem to express \(\sin 5 \theta\) and \(\cos 5 \theta\) in terms of \(\sin \theta\) and \(\cos \theta\), show that $$\tan 5 \theta = \frac { 5 t - 10 t ^ { 3 } + t ^ { 5 } } { 1 - 10 t ^ { 2 } + 5 t ^ { 4 } }$$ where \(t = \tan \theta\). Show that the roots of the equation \(x ^ { 4 } - 10 x ^ { 2 } + 5 = 0\) are \(\tan \left( \frac { 1 } { 5 } n \pi \right)\) for \(n = 1,2,3,4\). By considering the product of the roots of this equation, find the exact value of \(\tan \left( \frac { 1 } { 5 } \pi \right) \tan \left( \frac { 2 } { 5 } \pi \right)\).
CAIE FP1 2019 November Q9
11 marks Challenging +1.8
9
  1. Use de Moivre's theorem to show that $$\sec 6 \theta = \frac { \sec ^ { 6 } \theta } { 32 - 48 \sec ^ { 2 } \theta + 18 \sec ^ { 4 } \theta - \sec ^ { 6 } \theta }$$
  2. Hence obtain the roots of the equation $$3 x ^ { 6 } - 36 x ^ { 4 } + 96 x ^ { 2 } - 64 = 0$$ in the form sec \(q \pi\), where \(q\) is rational.
CAIE FP1 2017 Specimen Q10
12 marks Challenging +1.3
10
  1. Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta } .$$
  2. Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
  3. Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). [3]
CAIE FP1 2015 November Q10
12 marks Challenging +1.2
10 Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$ Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
[0pt] [Question 11 is printed on the next page.]
AQA FP2 2011 June Q7
16 marks Challenging +1.2
7
    1. Use de Moivre's Theorem to show that $$\cos 5 \theta = \cos ^ { 5 } \theta - 10 \cos ^ { 3 } \theta \sin ^ { 2 } \theta + 5 \cos \theta \sin ^ { 4 } \theta$$ and find a similar expression for \(\sin 5 \theta\).
    2. Deduce that $$\tan 5 \theta = \frac { \tan \theta \left( 5 - 10 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta \right) } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$
  1. Explain why \(t = \tan \frac { \pi } { 5 }\) is a root of the equation $$t ^ { 4 } - 10 t ^ { 2 } + 5 = 0$$ and write down the three other roots of this equation in trigonometrical form.
    (3 marks)
  2. Deduce that $$\tan \frac { \pi } { 5 } \tan \frac { 2 \pi } { 5 } = \sqrt { 5 }$$
AQA FP2 2013 June Q8
17 marks Challenging +1.2
8
    1. Use de Moivre's theorem to show that $$\cos 4 \theta = \cos ^ { 4 } \theta - 6 \cos ^ { 2 } \theta \sin ^ { 2 } \theta + \sin ^ { 4 } \theta$$ and find a similar expression for \(\sin 4 \theta\).
    2. Deduce that $$\tan 4 \theta = \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta }$$
  1. Explain why \(t = \tan \frac { \pi } { 16 }\) is a root of the equation $$t ^ { 4 } + 4 t ^ { 3 } - 6 t ^ { 2 } - 4 t + 1 = 0$$ and write down the three other roots in trigonometric form.
  2. Hence show that $$\tan ^ { 2 } \frac { \pi } { 16 } + \tan ^ { 2 } \frac { 3 \pi } { 16 } + \tan ^ { 2 } \frac { 5 \pi } { 16 } + \tan ^ { 2 } \frac { 7 \pi } { 16 } = 28$$
AQA FP2 2016 June Q8
13 marks Challenging +1.2
8
  1. By applying de Moivre's theorem to \(( \cos \theta + i \sin \theta ) ^ { 4 }\), where \(\cos \theta \neq 0\), show that $$( 1 + i \tan \theta ) ^ { 4 } + ( 1 - i \tan \theta ) ^ { 4 } = \frac { 2 \cos 4 \theta } { \cos ^ { 4 } \theta }$$
  2. Hence show that \(z = \mathrm { i } \tan \frac { \pi } { 8 }\) satisfies the equation \(( 1 + z ) ^ { 4 } + ( 1 - z ) ^ { 4 } = 0\), and express the three other roots of this equation in the form \(\mathrm { i } \tan \phi\), where \(0 < \phi < \pi\).
  3. Use the results from part (b) to find the values of:
    1. \(\tan ^ { 2 } \frac { \pi } { 8 } \tan ^ { 2 } \frac { 3 \pi } { 8 }\);
    2. \(\tan ^ { 2 } \frac { \pi } { 8 } + \tan ^ { 2 } \frac { 3 \pi } { 8 }\).
      \includegraphics[max width=\textwidth, alt={}]{a629b09d-3633-4dbd-83db-7eb89577438c-23_2488_1709_219_153}
      \section*{DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED}
AQA Further Paper 1 2024 June Q13
9 marks Standard +0.3
13
  1. Use de Moivre's theorem to show that $$\cos 3 \theta = 4 \cos ^ { 3 } \theta - 3 \cos \theta$$ 13
  2. Use de Moivre's theorem to express \(\sin 3 \theta\) in terms of \(\sin \theta\)
    13
  3. Hence show that $$\cot 3 \theta = \frac { \cot ^ { 3 } \theta - 3 \cot \theta } { 3 \cot ^ { 2 } \theta - 1 }$$