CAIE
FP1
2011
June
Q11 EITHER
Challenging +1.3
Use de Moivre's theorem to prove that
$$\tan 3 \theta = \frac { 3 \tan \theta - \tan ^ { 3 } \theta } { 1 - 3 \tan ^ { 2 } \theta }$$
State the exact values of \(\theta\), between 0 and \(\pi\), that satisfy \(\tan 3 \theta = 1\).
Express each root of the equation \(t ^ { 3 } - 3 t ^ { 2 } - 3 t + 1 = 0\) in the form \(\tan ( k \pi )\), where \(k\) is a positive rational number.
For each of these values of \(k\), find the exact value of \(\tan ( k \pi )\).
CAIE
FP1
2016
June
Q6
9 marks
Challenging +1.8
6 Use de Moivre's theorem to express \(\cot 7 \theta\) in terms of \(\cot \theta\).
Use the equation \(\cot 7 \theta = 0\) to show that the roots of the equation
$$x ^ { 6 } - 21 x ^ { 4 } + 35 x ^ { 2 } - 7 = 0$$
are \(\cot \left( \frac { 1 } { 14 } k \pi \right)\) for \(k = 1,3,5,9,11,13\), and deduce that
$$\cot ^ { 2 } \left( \frac { 1 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 3 } { 14 } \pi \right) \cot ^ { 2 } \left( \frac { 5 } { 14 } \pi \right) = 7$$
CAIE
FP1
2010
November
Q10
10 marks
Challenging +1.3
10 By using de Moivre's theorem to express \(\sin 5 \theta\) and \(\cos 5 \theta\) in terms of \(\sin \theta\) and \(\cos \theta\), show that
$$\tan 5 \theta = \frac { 5 t - 10 t ^ { 3 } + t ^ { 5 } } { 1 - 10 t ^ { 2 } + 5 t ^ { 4 } }$$
where \(t = \tan \theta\).
Show that the roots of the equation \(x ^ { 4 } - 10 x ^ { 2 } + 5 = 0\) are \(\tan \left( \frac { 1 } { 5 } n \pi \right)\) for \(n = 1,2,3,4\).
By considering the product of the roots of this equation, find the exact value of \(\tan \left( \frac { 1 } { 5 } \pi \right) \tan \left( \frac { 2 } { 5 } \pi \right)\).
CAIE
FP1
2015
November
Q10
12 marks
Challenging +1.2
10 Using de Moivre's theorem, show that
$$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$
Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
[0pt]
[Question 11 is printed on the next page.]