AQA Further Paper 1 2024 June — Question 13

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2024
SessionJune
TopicComplex numbers 2

13
  1. Use de Moivre's theorem to show that $$\cos 3 \theta = 4 \cos ^ { 3 } \theta - 3 \cos \theta$$ 13
  2. Use de Moivre's theorem to express \(\sin 3 \theta\) in terms of \(\sin \theta\)
    13
  3. Hence show that $$\cot 3 \theta = \frac { \cot ^ { 3 } \theta - 3 \cot \theta } { 3 \cot ^ { 2 } \theta - 1 }$$