A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q8
AQA FP2 2010 January — Question 8
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2010
Session
January
Topic
Complex numbers 2
8
Show that \(\omega = \mathrm { e } ^ { \frac { 2 \pi \mathrm { i } } { 7 } }\) is a root of the equation \(z ^ { 7 } = 1\).
Write down the five other non-real roots in terms of \(\omega\).
Show that $$1 + \omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } + \omega ^ { 5 } + \omega ^ { 6 } = 0$$
Show that:
\(\quad \omega ^ { 2 } + \omega ^ { 5 } = 2 \cos \frac { 4 \pi } { 7 }\);
\(\cos \frac { 2 \pi } { 7 } + \cos \frac { 4 \pi } { 7 } + \cos \frac { 6 \pi } { 7 } = - \frac { 1 } { 2 }\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8