nth roots with preliminary simplification

Questions where the complex number w must first be obtained through algebraic manipulation (e.g., division, simplification of expressions) before solving z^n = w using De Moivre's theorem.

1 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
AQA FP2 2010 June Q7
10 marks Standard +0.3
7
    1. Express each of the numbers \(1 + \sqrt { 3 } \mathrm { i }\) and \(1 - \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
    2. Hence express $$( 1 + \sqrt { 3 } i ) ^ { 8 } ( 1 - i ) ^ { 5 }$$ in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\).
  1. Solve the equation $$z ^ { 3 } = ( 1 + \sqrt { 3 } \mathrm { i } ) ^ { 8 } ( 1 - \mathrm { i } ) ^ { 5 }$$ giving your answers in the form \(a \sqrt { 2 } \mathrm { e } ^ { \mathrm { i } \theta }\), where \(a\) is a positive integer and \(- \pi < \theta \leqslant \pi\).