Questions (30179 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 2 2020 June Q1
6 marks Standard +0.8
1 Find the general solution of the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } - 8 \frac { d x } { d t } - 9 x = 9 e ^ { 8 t }$$
CAIE Further Paper 2 2020 June Q2
6 marks Challenging +1.3
2 Let \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { 1 } ( 1 + 3 \mathrm { x } ) ^ { \mathrm { n } } \mathrm { e } ^ { - 3 \mathrm { x } } \mathrm { dx }\), where \(n\) is an integer.
  1. Show that \(3 \mathrm { I } _ { \mathrm { n } } = 1 - 4 ^ { \mathrm { n } } \mathrm { e } ^ { - 3 } + 3 \mathrm { nl } _ { \mathrm { n } - 1 }\).
  2. Find the exact value of \(I _ { 2 }\).
CAIE Further Paper 2 2020 June Q3
8 marks Standard +0.3
3 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 5 & - 1 & 7 \\ 0 & 6 & 0 \\ 7 & 7 & 5 \end{array} \right) .$$
  1. Find the eigenvalues of \(\mathbf { A }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\). \includegraphics[max width=\textwidth, alt={}, center]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-06_568_1614_294_262} The diagram shows the curve with equation \(\mathrm { y } = \ln \mathrm { x }\) for \(x \geqslant 1\), together with a set of ( \(N - 1\) ) rectangles of unit width.
  3. By considering the sum of the areas of these rectangles, show that $$\ln N ! > N \ln N - N + 1 .$$
  4. Use a similar method to find, in terms of \(N\), an upper bound for \(\operatorname { In } N\) !.
CAIE Further Paper 2 2020 June Q5
9 marks Challenging +1.2
5 The curve \(C\) has parametric equations $$\mathrm { x } = \frac { 1 } { 2 } \mathrm { t } ^ { 2 } - \ln \mathrm { t } , \quad \mathrm { y } = 2 \mathrm { t } + 1 , \quad \text { for } \frac { 1 } { 2 } \leqslant t \leqslant 2$$
  1. Find the exact length of \(C\).
  2. Find \(\frac { \mathrm { d } ^ { 2 } \mathrm { y } } { \mathrm { dx } ^ { 2 } }\) in terms of \(t\), simplifying your answer.
CAIE Further Paper 2 2020 June Q6
12 marks Challenging +1.2
6
  1. Starting from the definitions of tanh and sech in terms of exponentials, prove that $$1 - \tanh ^ { 2 } \theta = \operatorname { sech } ^ { 2 } \theta$$ \includegraphics[max width=\textwidth, alt={}, center]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_72_1552_374_347} \includegraphics[max width=\textwidth, alt={}]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_67_1569_466_328} ......................................................................................................................................... ........................................................................................................................................ \includegraphics[max width=\textwidth, alt={}, center]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_72_1573_735_324} \includegraphics[max width=\textwidth, alt={}]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_72_1573_826_324} .......................................................................................................................................... . ........................................................................................................................................ . The variables \(x\) and \(y\) are such that \(\tanh y = \cos \left( x + \frac { 1 } { 4 } \pi \right)\), for \(- \frac { 1 } { 4 } \pi < x < \frac { 3 } { 4 } \pi\).
  2. By differentiating the equation \(\tanh y = \cos \left( x + \frac { 1 } { 4 } \pi \right)\) with respect to \(x\), show that $$\frac { \mathrm { dy } } { \mathrm { dx } } = - \operatorname { cosec } \left( \mathrm { x } + \frac { 1 } { 4 } \pi \right)$$
  3. Hence find the first three terms in the Maclaurin's series for \(\tanh ^ { - 1 } \left( \cos \left( x + \frac { 1 } { 4 } \pi \right) \right)\) in the form \(\frac { 1 } { 2 } \ln a + b x + c x ^ { 2 }\), giving the exact values of the constants \(a , b\) and \(c\).
CAIE Further Paper 2 2020 June Q7
11 marks Challenging +1.8
7
  1. Show that an appropriate integrating factor for $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ is \(x + \sqrt { x ^ { 2 } + 1 }\).
  2. Hence find the solution of the differential equation $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ for which \(y = \ln 2\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2020 June Q8
15 marks Challenging +1.8
8
  1. Use de Moivre's theorem to show that \(\sin ^ { 6 } \theta = - \frac { 1 } { 32 } ( \cos 6 \theta - 6 \cos 4 \theta + 15 \cos 2 \theta - 10 )\).
    It is given that \(\cos ^ { 6 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta + 6 \cos 4 \theta + 15 \cos 2 \theta + 10 )\).
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \left( \cos ^ { 6 } \left( \frac { 1 } { 4 } x \right) + \sin ^ { 6 } \left( \frac { 1 } { 4 } x \right) \right) \mathrm { d } x\).
  3. Express each root of the equation \(16 c ^ { 6 } + 16 \left( 1 - c ^ { 2 } \right) ^ { 3 } - 13 = 0\) in the form \(\cos k \pi\), where \(k\) is a rational number.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2021 June Q1
5 marks Standard +0.3
1
  1. Given that \(a\) is an integer, show that the system of equations $$\begin{aligned} a x + 3 y + z & = 14 \\ 2 x + y + 3 z & = 0 \\ - x + 2 y - 5 z & = 17 \end{aligned}$$ has a unique solution and interpret this situation geometrically.
  2. Find the value of \(a\) for which \(x = 1 , y = 4 , z = - 2\) is the solution to the system of equations in part (a).
CAIE Further Paper 2 2021 June Q2
7 marks Standard +0.3
2 The variables \(x\) and \(y\) are related by the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 3 \frac { d y } { d x } + 2 y = 2 x + 1$$
  1. Find the general solution for \(y\) in terms of \(x\).
  2. State an approximate solution for large positive values of \(x\).
CAIE Further Paper 2 2021 June Q3
10 marks Standard +0.8
3 \includegraphics[max width=\textwidth, alt={}, center]{fa2213b3-480c-44cb-8ba0-ebd2b94d3d90-04_851_805_251_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 3 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x < U _ { n }\), where $$\mathrm { U } _ { \mathrm { n } } = \left( \frac { \mathrm { n } + 1 } { 2 \mathrm { n } } \right) ^ { 2 }$$
  2. Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x\).
  3. Find the least value of \(n\) such that \(\mathrm { U } _ { \mathrm { n } } - \mathrm { L } _ { \mathrm { n } } < 10 ^ { - 3 }\).
CAIE Further Paper 2 2021 June Q4
9 marks Challenging +1.2
4 Find the solution of the differential equation $$\sin \theta \frac { d y } { d \theta } + y = \tan \frac { 1 } { 2 } \theta$$ where \(0 < \theta < \pi\), given that \(y = 1\) when \(\theta = \frac { 1 } { 2 } \pi\). Give your answer in the form \(y = \mathrm { f } ( \theta )\). [You may use without proof the result that \(\int \operatorname { cosec } \theta d \theta = \ln \tan \frac { 1 } { 2 } \theta\).]
CAIE Further Paper 2 2021 June Q5
10 marks Challenging +1.2
5
  1. State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\).
  2. Given that \(z\) is an \(n\)th root of unity and \(z \neq 1\), deduce that \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = 0\).
  3. Given instead that \(z = \frac { 1 } { 3 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to show that $$\sum _ { m = 1 } ^ { \infty } 3 ^ { - m } \cos m \theta = \frac { 3 \cos \theta - 1 } { 10 - 6 \cos \theta }$$
CAIE Further Paper 2 2021 June Q6
11 marks Challenging +1.2
6 The matrix \(\mathbf { A }\) is given by $$A = \left( \begin{array} { r r r } 5 & - \frac { 22 } { 3 } & 8 \\ 0 & - 6 & 0 \\ 0 & 0 & 1 \end{array} \right)$$
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 2 } = \mathbf { P D P } ^ { - 1 }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { 3 }\).
CAIE Further Paper 2 2021 June Q7
10 marks Challenging +1.2
7
  1. It is given that \(\mathrm { y } = \operatorname { sech } ^ { - 1 } \left( \mathrm { x } + \frac { 1 } { 2 } \right)\).
    Express cosh \(y\) in terms of \(x\) and hence show that \(\sinh y \frac { d y } { d x } = - \frac { 1 } { \left( x + \frac { 1 } { 2 } \right) ^ { 2 } }\).
  2. Find the first three terms in the Maclaurin's series for \(\operatorname { sech } ^ { - 1 } \left( x + \frac { 1 } { 2 } \right)\) in the form $$\ln a + b x + c x ^ { 2 }$$ where \(a\), \(b\) and \(c\) are constants to be determined.
CAIE Further Paper 2 2021 June Q8
13 marks Challenging +1.8
8 The curve \(C\) has parametric equations $$\mathbf { x } = 2 \cosh t , \quad \mathbf { y } = \frac { 3 } { 2 } \mathbf { t } - \frac { 1 } { 4 } \sinh 2 \mathbf { t } , \text { for } 0 \leqslant t \leqslant 1$$
  1. Find \(\frac { \mathrm { dx } } { \mathrm { dt } }\) and show that \(\frac { \mathrm { dy } } { \mathrm { dt } } = 1 - \sinh ^ { 2 } \mathrm { t }\).
    The area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\).
    1. Show that \(\mathrm { A } = \pi \int _ { 0 } ^ { 1 } \left( \frac { 3 } { 2 } \mathrm { t } - \frac { 1 } { 4 } \sinh 2 \mathrm { t } \right) ( 1 + \cosh 2 \mathrm { t } ) \mathrm { dt }\).
    2. Hence find \(A\) in terms of \(\pi , \sinh 2\) and \(\cosh 2\).
      If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2021 June Q3
10 marks Standard +0.8
3 \includegraphics[max width=\textwidth, alt={}, center]{fd247a71-4680-45d8-89d2-fef17ed3a5e9-04_851_805_251_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 3 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x < U _ { n }\), where $$\mathrm { U } _ { \mathrm { n } } = \left( \frac { \mathrm { n } + 1 } { 2 \mathrm { n } } \right) ^ { 2 }$$
  2. Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x\).
  3. Find the least value of \(n\) such that \(\mathrm { U } _ { \mathrm { n } } - \mathrm { L } _ { \mathrm { n } } < 10 ^ { - 3 }\).
CAIE Further Paper 2 2021 June Q1
7 marks Standard +0.8
1
  1. Find \(a\) and \(b\) such that $$z ^ { 8 } - i z ^ { 5 } - z ^ { 3 } + i = \left( z ^ { 5 } - a \right) \left( z ^ { 3 } - b \right) .$$
  2. Hence find the roots of $$z ^ { 8 } - i z ^ { 5 } - z ^ { 3 } + i = 0$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
CAIE Further Paper 2 2021 June Q2
7 marks Challenging +1.2
2 Find the Maclaurin's series for \(\ln \cosh x\) up to and including the term in \(x ^ { 4 }\).
CAIE Further Paper 2 2021 June Q3
10 marks Challenging +1.8
3 \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-04_540_1511_276_274} The diagram shows the curve \(\mathrm { y } = \frac { \mathrm { x } } { 2 \mathrm { x } ^ { 2 } - 1 }\) for \(x \geqslant 1\), together with a set of \(N - 1\) rectangles of unit
width. width.
  1. By considering the sum of the areas of these rectangles, show that $$\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 } < \frac { 1 } { 4 } \ln \left( 2 N ^ { 2 } - 1 \right) + 1$$
  2. Use a similar method to find, in terms of \(N\), a lower bound for \(\sum _ { r = 1 } ^ { N } \frac { r } { 2 r ^ { 2 } - 1 }\).
CAIE Further Paper 2 2021 June Q4
7 marks Challenging +1.2
4 By considering the binomial expansions of \(\left( z + \frac { 1 } { z } \right) ^ { 5 }\) and \(\left( z - \frac { 1 } { z } \right) ^ { 5 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$\tan ^ { 5 } \theta = \frac { \sin 5 \theta - \mathrm { a } \sin 3 \theta + \mathrm { b } \sin \theta } { \cos 5 \theta + \mathrm { a } \cos 3 \theta + \mathrm { b } \cos \theta }$$ where \(a\) and \(b\) are integers to be determined.
CAIE Further Paper 2 2021 June Q5
10 marks Standard +0.8
5 The variables \(x\) and \(y\) are related by the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } - 2 \frac { d y } { d x } - 3 y = 4 e ^ { - x }$$
  1. Find the value of the constant \(k\) such that \(\mathrm { y } = \mathrm { kxe } ^ { - \mathrm { x } }\) is a particular integral of the differential equation.
  2. Find the solution of the differential equation for which \(\mathrm { y } = \frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 1 } { 2 }\) when \(x = 0\).
CAIE Further Paper 2 2021 June Q6
10 marks Challenging +1.2
6
  1. Starting from the definitions of sinh and cosh in terms of exponentials, prove that $$2 \sinh ^ { 2 } x = \cosh 2 x - 1$$ \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_67_1550_374_347} \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_65_1569_468_328} \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_67_1573_557_324} \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_70_1573_646_324} \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_72_1573_735_324} \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_72_1570_826_324} \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_74_1570_916_324} \includegraphics[max width=\textwidth, alt={}, center]{e313d6f0-7615-4be5-b13e-2796fd6335e5-10_69_1570_1007_324}
  2. Find the solution to the differential equation $$\frac { d y } { d x } + y \operatorname { coth } x = 4 \sinh x$$ for which \(y = 1\) when \(x = \ln 3\).
CAIE Further Paper 2 2021 June Q7
11 marks Challenging +1.8
7 The integral \(\mathrm { I } _ { \mathrm { n } }\), where n is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 3 } { 2 } } \left( 4 + \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { 1 }\), expressing your answer in logarithmic form.
  2. By considering \(\frac { d } { d x } \left( x \left( 4 + x ^ { 2 } \right) ^ { - \frac { 1 } { 2 } n } \right)\), or otherwise, show that $$4 n l _ { n + 2 } = \frac { 3 } { 2 } \left( \frac { 2 } { 5 } \right) ^ { n } + ( n - 1 ) l _ { n } .$$
  3. Find the value of \(I _ { 5 }\).
CAIE Further Paper 2 2021 June Q8
13 marks Standard +0.8
8
  1. Find the value of \(a\) for which the system of equations $$\begin{array} { r } 13 x + 18 y - 28 z = 0 \\ - 4 x - a y + 8 z = 0 \\ 2 x + 6 y - 5 z = 0 \end{array}$$ does not have a unique solution.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 13 & 18 & - 28 \\ - 4 & - 1 & 8 \\ 2 & 6 & - 5 \end{array} \right)$$
  2. Find the eigenvalue of \(\mathbf { A }\) corresponding to the eigenvector \(\left( \begin{array} { l } 2 \\ 0 \\ 1 \end{array} \right)\).
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { - 1 }\).
  4. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\) in terms of \(\mathbf { A }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2022 June Q1
5 marks
1 The curve \(C\) has polar equation \(r = \mathrm { e } ^ { \frac { 3 } { 4 } \theta }\) for \(0 \leqslant \theta \leqslant \alpha\).
Given that the length of \(C\) is \(s\), find \(\alpha\) in terms of \(s\).