CAIE Further Paper 2 2021 June — Question 7

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2021
SessionJune
TopicReduction Formulae

7 The integral \(\mathrm { I } _ { \mathrm { n } }\), where n is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 3 } { 2 } } \left( 4 + \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { 1 }\), expressing your answer in logarithmic form.
  2. By considering \(\frac { d } { d x } \left( x \left( 4 + x ^ { 2 } \right) ^ { - \frac { 1 } { 2 } n } \right)\), or otherwise, show that $$4 n l _ { n + 2 } = \frac { 3 } { 2 } \left( \frac { 2 } { 5 } \right) ^ { n } + ( n - 1 ) l _ { n } .$$
  3. Find the value of \(I _ { 5 }\).