AQA
Further AS Paper 1
2022
June
Q4
1 marks
Easy -1.2
4 The complex numbers \(w\) and \(z\) are defined as
$$\begin{aligned}
w & = 2 ( \cos \alpha + \mathrm { i } \sin \alpha ) \\
z & = 3 ( \cos \beta + \mathrm { i } \sin \beta )
\end{aligned}$$
Find the product \(w z\)
Tick \(( \checkmark )\) one box.
$$\begin{aligned}
& 5 ( \cos ( \alpha \beta ) + \mathrm { i } \sin ( \alpha \beta ) ) \\
& 6 ( \cos ( \alpha \beta ) + \mathrm { i } \sin ( \alpha \beta ) ) \\
& 5 ( \cos ( \alpha + \beta ) + \mathrm { i } \sin ( \alpha + \beta ) ) \\
& 6 ( \cos ( \alpha + \beta ) + \mathrm { i } \sin ( \alpha + \beta ) )
\end{aligned}$$
\includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-03_113_113_762_1206}
\includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-03_108_108_900_1206}
\includegraphics[max width=\textwidth, alt={}, center]{fd9715c4-9ce1-4608-aed6-f3d4f71208b5-03_113_113_1032_1206}
□
AQA
Further AS Paper 1
2022
June
Q11
4 marks
Standard +0.8
11 Prove by induction that, for all integers \(n \geq 1\),
$$\left( \mathbf { A B A } ^ { - 1 } \right) ^ { n } = \mathbf { A B } ^ { n } \mathbf { A } ^ { - 1 }$$
where \(\mathbf { A }\) and \(\mathbf { B }\) are square matrices of equal dimensions, and \(\mathbf { A }\) is non-singular.
AQA
Further AS Paper 1
2024
June
Q2
1 marks
Easy -1.8
2 The function f is defined by
$$f ( x ) = 2 x + 3 \quad 0 \leq x \leq 5$$
The region \(R\) is enclosed by \(y = \mathrm { f } ( x ) , x = 5\), the \(x\)-axis and the \(y\)-axis.
The region \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Give an expression for the volume of the solid formed.
Tick ( ✓ ) one box.
\(\pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) d x\)
\includegraphics[max width=\textwidth, alt={}, center]{47b12ae4-ca3f-472c-9d15-2ef17a2a4d87-02_113_108_1539_1000}
\(\pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) ^ { 2 } \mathrm {~d} x\)
\includegraphics[max width=\textwidth, alt={}, center]{47b12ae4-ca3f-472c-9d15-2ef17a2a4d87-02_115_108_1699_1000}
\(2 \pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) d x\) □
\(2 \pi \int _ { 0 } ^ { 5 } ( 2 x + 3 ) ^ { 2 } \mathrm {~d} x\) □
AQA
Further AS Paper 1
2024
June
Q4
1 marks
Easy -1.2
4 The line \(L\) has vector equation
$$\mathbf { r } = \left[ \begin{array} { c }
4 \\
- 7 \\
0
\end{array} \right] + \lambda \left[ \begin{array} { c }
- 9 \\
1 \\
3
\end{array} \right]$$
Give the equation of \(L\) in Cartesian form.
Tick ( ✓ ) one box.
\(\frac { x + 4 } { - 9 } = \frac { y - 7 } { 1 } = \frac { z } { 3 }\)
\includegraphics[max width=\textwidth, alt={}, center]{47b12ae4-ca3f-472c-9d15-2ef17a2a4d87-03_108_109_1398_993}
\(\frac { x - 4 } { - 9 } = \frac { y + 7 } { 1 } = \frac { z } { 3 }\)
\includegraphics[max width=\textwidth, alt={}, center]{47b12ae4-ca3f-472c-9d15-2ef17a2a4d87-03_108_111_1567_991}
\(\frac { x + 9 } { 4 } = \frac { y - 1 } { - 7 } , z = 3\) □
\(\frac { x - 9 } { 4 } = \frac { y + 1 } { - 7 } , z = 3\) □