Sketch, also on the Argand diagram above, the locus of points satisfying the equation
$$\arg z = \frac { \pi } { 3 }$$
[1 mark]
12
For the complex number \(w\) find the maximum value of \(| w |\) such that
$$| w - 2 \mathrm { i } | \leq 2 \quad \text { and } \quad 0 \leq \arg w \leq \frac { \pi } { 3 }$$
$$y = \frac { 2 x + 7 } { 3 x + 5 }$$