AQA Further AS Paper 1 2022 June — Question 9

Exam BoardAQA
ModuleFurther AS Paper 1 (Further AS Paper 1)
Year2022
SessionJune
TopicSequences and series, recurrence and convergence

9
  1. Show that, for \(r > 0\), $$\ln ( r + 2 ) - \ln r = \ln \left( 1 + \frac { 2 } { r } \right)$$ 9
  2. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } \ln \left( 1 + \frac { 2 } { r } \right) = \ln \left( \frac { 1 } { 2 } ( n + a ) ( n + b ) \right)$$ where \(a\) and \(b\) are integers to be found.