3. A system of forces consists of two forces \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) acting on a rigid body.
\(\mathbf { F } _ { 1 } = ( - 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \mathrm { N }\) and acts at the point with position vector \(\mathbf { r } _ { 1 } = ( \mathbf { i } - \mathbf { j } + \mathbf { k } ) \mathrm { m }\).
\(\mathbf { F } _ { 2 } = ( 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } ) \mathrm { N }\) and acts at the point with position vector \(\mathbf { r } _ { 2 } = ( 4 \mathbf { i } - \mathbf { j } - 2 \mathbf { k } ) \mathrm { m }\).
Given that the system is equivalent to a single force \(\mathbf { R } \mathrm { N }\), acting at the point with position vector \(( 5 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \mathrm { m }\), together with a couple \(\mathbf { G N m }\), find
- \(\mathbf { R }\),
- the magnitude of \(\mathbf { G }\).
(9)