- At time \(t = 0\), a particle \(P\) of mass 3 kg is at rest at the point \(A\) with position vector \(( \mathbf { j } - 3 \mathbf { k } ) \mathrm { m }\). Two constant forces \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) then act on the particle \(P\) and it passes through the point \(B\) with position vector \(( 8 \mathbf { i } - 3 \mathbf { j } + 5 \mathbf { k } ) \mathrm { m }\).
Given that \(\mathbf { F } _ { 1 } = ( 4 \mathbf { i } - 2 \mathbf { j } + 5 \mathbf { k } ) \mathrm { N }\) and \(\mathbf { F } _ { 2 } = ( 8 \mathbf { i } - 4 \mathbf { j } + 7 \mathbf { k } ) \mathrm { N }\) and that \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) are the only two forces acting on \(P\), find the velocity of \(P\) as it passes through \(B\), giving your answer as a vector.