Edexcel M5 2008 June — Question 7

Exam BoardEdexcel
ModuleM5 (Mechanics 5)
Year2008
SessionJune
TopicMoments

7. A uniform square lamina \(A B C D\), of mass \(2 m\) and side \(3 a \sqrt { 2 }\), is free to rotate in a vertical plane about a fixed smooth horizontal axis \(L\) which passes through \(A\) and is perpendicular to the plane of the lamina. The moment of inertia of the lamina about \(L\) is \(24 m a ^ { 2 }\). The lamina is at rest with \(C\) vertically above \(A\). At time \(t = 0\) the lamina is slightly displaced. At time \(t\) the lamina has rotated through an angle \(\theta\).
  1. Show that $$2 a \left( \frac { d \theta } { d t } \right) ^ { 2 } = g ( 1 - \cos \theta )$$
  2. Show that, at time \(t\), the magnitude of the component of the force acting on the lamina at \(A\), in a direction perpendicular to \(A C\), is \(\frac { 1 } { 2 } m g \sin \theta\). When the lamina reaches the position with \(C\) vertically below \(A\), it receives an impulse which acts at \(C\), in the plane of the lamina and in a direction which is perpendicular to the line \(A C\). As a result of this impulse the lamina is brought immediately to rest.
  3. Find the magnitude of the impulse.