- A rocket propels itself by its engine ejecting burnt fuel. Initially the rocket has total mass \(M\), of which a mass \(k M , k < 1\), is fuel. The rocket is at rest when its engine is started. The burnt fuel is ejected with constant speed \(c\), relative to the rocket, in a direction opposite to that of the rocket's motion. Assuming that there are no external forces, find the speed of the rocket when all its fuel has been burnt.
- Two forces \(\mathbf { F } _ { 1 } = ( 3 \mathbf { j } + \mathbf { k } ) \mathrm { N }\) and \(\mathbf { F } _ { 2 } = ( 4 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \mathrm { N }\) act on a rigid body.
The force \(\mathbf { F } _ { 1 }\) acts at the point with position vector ( \(2 \mathbf { i } - \mathbf { j } + 3 \mathbf { k }\) ) m and the force \(\mathbf { F } _ { 2 }\) acts at the point with position vector ( \(- 3 \mathbf { i } + 2 \mathbf { k }\) ) m.
The two forces are equivalent to a single force \(\mathbf { R }\) acting at the point with position vector \(( \mathbf { i } + 2 \mathbf { j } + \mathbf { k } ) \mathrm { m }\) together with a couple of moment \(\mathbf { G }\).
Find,
- \(\mathbf { R }\),
- \(\mathbf { G }\).
A third force \(\mathbf { F } _ { 3 }\) is now added to the system. The force \(\mathbf { F } _ { 3 }\) acts at the point with position vector ( \(2 \mathbf { i } - \mathbf { k }\) ) m and the three forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\) are equivalent to a couple.
- Find the magnitude of the couple.