| Exam Board | Edexcel |
| Module | M5 (Mechanics 5) |
| Year | 2008 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
2. The velocity \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\) of a particle \(P\) at time \(t\) seconds satisfies the vector differential equation
$$\frac { \mathrm { d } \mathbf { v } } { \mathrm {~d} t } + 4 \mathbf { v } = \mathbf { 0 }$$
The position vector of \(P\) at time \(t\) seconds is \(\mathbf { r }\) metres.
Given that at \(t = 0 , \mathbf { r } = ( \mathbf { i } - \mathbf { j } )\) and \(\mathbf { v } = ( - 8 \mathbf { i } + 4 \mathbf { j } )\), find \(\mathbf { r }\) at time \(t\) seconds.