Edexcel M5 2007 June — Question 7

Exam BoardEdexcel
ModuleM5 (Mechanics 5)
Year2007
SessionJune
TopicVariable Force

7. A motor boat of mass \(M\) is moving in a straight line, with its engine switched off, across a stretch of still water. The boat is moving with speed \(U\) when, at time \(t = 0\), it develops a leak. The water comes in at a constant rate so that at time \(t\), the mass of water in the boat is \(\lambda t\). At time \(t\) the speed of the boat is \(v\) and it experiences a total resistance to motion of magnitude \(2 \lambda v\).
  1. Show that \(( M + \lambda t ) \frac { \mathrm { d } v } { \mathrm {~d} t } + 3 \lambda v = 0\).
    (6)
  2. Show that the time taken for the speed of the boat to reduce to \(\frac { 1 } { 2 } U\) is \(\frac { M } { \lambda } \left( 2 ^ { \frac { 1 } { 3 } } - 1 \right)\).
    (6) The boat sinks when the mass of water inside the boat is \(M\).
  3. Show that the boat does not sink before the speed of the boat is \(\frac { 1 } { 2 } U\).