Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2017 June Q11
Challenging +1.2
11 The curve \(C\) has polar equation \(r = a ( 1 + \sin \theta )\) for \(- \pi < \theta \leqslant \pi\), where \(a\) is a positive constant.
  1. Sketch \(C\).
  2. Find the area of the region enclosed by \(C\).
  3. Show that the length of the arc of \(C\) from the pole to the point furthest from the pole is given by $$s = ( \sqrt { } 2 ) a \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \sqrt { } ( 1 + \sin \theta ) \mathrm { d } \theta$$
  4. Show that the substitution \(u = 1 + \sin \theta\) reduces this integral for \(s\) to \(( \sqrt { } 2 ) a \int _ { 0 } ^ { 2 } \frac { 1 } { \sqrt { } ( 2 - u ) } \mathrm { d } u\). Hence evaluate \(s\).
CAIE FP1 2017 June Q12 EITHER
Challenging +1.2
The curve \(C\) has equation \(y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) for \(0 \leqslant x \leqslant 4\).
  1. The region \(R\) is bounded by \(C\), the \(x\)-axis, the \(y\)-axis and the line \(x = 4\). Find, in terms of e, the coordinates of the centroid of the region \(R\).
  2. Show that \(\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\), where \(s\) denotes the arc length of \(C\), and find the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2017 June Q12 OR
Challenging +1.2
The position vectors of the points \(A , B , C , D\) are $$\mathbf { i } + \mathbf { j } + 3 \mathbf { k } , \quad 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } , \quad 3 \mathbf { i } - \mathbf { j } + \mathbf { k } , \quad 5 \mathbf { i } - 5 \mathbf { j } + \alpha \mathbf { k } ,$$ respectively, where \(\alpha\) is a positive integer. It is given that the shortest distance between the line \(A B\) and the line \(C D\) is equal to \(2 \sqrt { } 2\).
  1. Show that the possible values of \(\alpha\) are 3 and 5 .
  2. Using \(\alpha = 3\), find the shortest distance of the point \(D\) from the line \(A C\), giving your answer correct to 3 significant figures.
  3. Using \(\alpha = 3\), find the acute angle between the planes \(A B C\) and \(A B D\), giving your answer in degrees.
    \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
    To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2017 June Q1
Standard +0.3
1 The roots of the cubic equation \(x ^ { 3 } + 2 x ^ { 2 } - 3 = 0\) are \(\alpha , \beta\) and \(\gamma\).
  1. By using the substitution \(y = \frac { 1 } { x ^ { 2 } }\), find the cubic equation with roots \(\frac { 1 } { \alpha ^ { 2 } } , \frac { 1 } { \beta ^ { 2 } }\) and \(\frac { 1 } { \gamma ^ { 2 } }\).
  2. Hence find the value of \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } }\).
  3. Find also the value of \(\frac { 1 } { \alpha ^ { 2 } \beta ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } \gamma ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } \alpha ^ { 2 } }\).
CAIE FP1 2017 June Q2
Standard +0.8
2
  1. Verify that \(\frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 r + 1 ) ( 2 r + 3 ) } { ( r + 1 ) ( r + 2 ) } - \frac { ( 2 r - 1 ) ( 2 r + 1 ) } { r ( r + 1 ) } \right\}\).
  2. Hence show that \(\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 n + 1 ) ( 2 n + 3 ) } { ( n + 1 ) ( n + 2 ) } - \frac { 3 } { 2 } \right\}\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) }\).
CAIE FP1 2017 June Q3
6 marks Standard +0.8
3 Prove, by mathematical induction, that \(\sum _ { r = 1 } ^ { n } r \ln \left( \frac { r + 1 } { r } \right) = \ln \left( \frac { ( n + 1 ) ^ { n } } { n ! } \right)\) for all positive integers \(n\). [6]
CAIE FP1 2017 June Q4
Standard +0.8
4 A curve \(C\) has equation \(x ^ { 3 } - 3 x y + y ^ { 2 } = 4\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 0,2 )\) of \(C\).
CAIE FP1 2017 June Q5
Challenging +1.2
5 A curve \(C\) has parametric equations $$x = \frac { 2 } { 5 } t ^ { \frac { 5 } { 2 } } - 2 t ^ { \frac { 1 } { 2 } } , \quad y = \frac { 4 } { 3 } t ^ { \frac { 3 } { 2 } } , \quad \text { for } 1 \leqslant t \leqslant 4$$
  1. Find the exact value of the arc length of \(C\).
  2. Find also the exact value of the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2017 June Q6
Challenging +1.8
6 Let \(I _ { n }\) denote \(\int _ { 0 } ^ { 2 } \left( 4 + x ^ { 2 } \right) ^ { - n } \mathrm {~d} x\).
  1. Find \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x \left( 4 + x ^ { 2 } \right) ^ { - n } \right)\) and hence show that $$8 n I _ { n + 1 } = ( 2 n - 1 ) I _ { n } + 2 \times 8 ^ { - n } .$$
  2. Use the result for integrating \(\frac { 1 } { x ^ { 2 } + a ^ { 2 } }\) with respect to \(x\), in the List of Formulae (MF10), to find the value of \(I _ { 1 }\) and deduce that $$I _ { 3 } = \frac { 3 } { 1024 } \pi + \frac { 1 } { 128 }$$
CAIE FP1 2017 June Q7
7
  1. Use de Moivre's theorem to prove that $$\tan 4 \theta = \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta } .$$
  2. Hence find the solutions of the equation $$t ^ { 4 } - 4 t ^ { 3 } - 6 t ^ { 2 } + 4 t + 1 = 0$$ giving your answers in the form \(\tan k \pi\), where \(k\) is a rational number.
CAIE FP1 2017 June Q8
Standard +0.8
8 Find the solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 9 x = 18 t ^ { 2 } + 6 t + 1$$ given that, when \(t = 0 , x = 3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2017 June Q9
Standard +0.3
9 The plane \(\Pi _ { 1 }\) passes through the points \(( 1,2,1 )\) and \(( 5 , - 2,9 )\) and is parallel to the vector \(\mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\).
  1. Find the cartesian equation of \(\Pi _ { 1 }\).
    The plane \(\Pi _ { 2 }\) contains the lines $$\mathbf { r } = 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } - \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } + \mu ( 2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } ) .$$
  2. Find the cartesian equation of \(\Pi _ { 2 }\).
  3. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
CAIE FP1 2017 June Q10
Standard +0.8
10 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 6 & - 8 & 7 \\ 7 & - 9 & 7 \\ 6 & - 6 & 5 \end{array} \right)$$
  1. Given that \(\left( \begin{array} { l } 1 \\ 1 \\ 0 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), find the corresponding eigenvalue.
  2. Given also that - 1 is an eigenvalue of \(\mathbf { A }\), find a corresponding eigenvector.
  3. It is given that the determinant of \(\mathbf { A }\) is equal to the product of the eigenvalues of \(\mathbf { A }\). Use this result to find the third eigenvalue of \(\mathbf { A }\), and find also a corresponding eigenvector.
  4. Write down matrices \(\mathbf { P }\) and \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\), where \(\mathbf { D }\) is a diagonal matrix, and hence find the matrix \(\mathbf { A } ^ { n }\) in terms of \(n\), where \(n\) is a positive integer.
CAIE FP1 2017 June Q11 EITHER
Challenging +1.2
A curve \(C\) has polar equation \(r = 2 a \cos \left( 2 \theta + \frac { 1 } { 2 } \pi \right)\) for \(0 \leqslant \theta < 2 \pi\), where \(a\) is a positive constant.
  1. Show that \(r = - 2 a \sin 2 \theta\) and sketch \(C\).
  2. Deduce that the cartesian equation of \(C\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = - 4 a x y .$$
  3. Find the area of one loop of \(C\).
  4. Show that, at the points (other than the pole) at which a tangent to \(C\) is parallel to the initial line, $$2 \tan \theta = - \tan 2 \theta .$$
CAIE FP1 2017 June Q11 OR
Challenging +1.8
The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & - 1 & 0 & 2 \\ 3 & - 1 & 4 & 0 \\ 5 & - 8 & - 6 & 19 \\ - 2 & 3 & 2 & - 7 \end{array} \right) ,$$ represents a transformation from \(\mathbb { R } ^ { 4 }\) to \(\mathbb { R } ^ { 4 }\).
  1. Find the rank of \(\mathbf { A }\) and show that \(\left\{ \left( \begin{array} { r } 2 \\ 2 \\ - 1 \\ 0 \end{array} \right) , \left( \begin{array} { l } 1 \\ 3 \\ 0 \\ 1 \end{array} \right) \right\}\) is a basis for the null space of the transformation.
  2. Show that if $$\mathbf { A x } = p \left( \begin{array} { r } 1 \\ 3 \\ 5 \\ - 2 \end{array} \right) + q \left( \begin{array} { r } - 1 \\ - 1 \\ - 8 \\ 3 \end{array} \right) ,$$ where \(p\) and \(q\) are given real numbers, then $$\mathbf { x } = \left( \begin{array} { c } p + 2 \lambda + \mu \\ q + 2 \lambda + 3 \mu \\ - \lambda \\ \mu \end{array} \right) ,$$ where \(\lambda\) and \(\mu\) are real numbers.
  3. Find the values of \(p\) and \(q\) such that $$p \left( \begin{array} { r } 1
    3
    5
    - 2 \end{array} \right) + q \left( \begin{array} { r } - 1
    - 1
    - 8
    3 \end{array} \right) = \left( \begin{array} { r } 3
    7
CAIE FP1 2017 June Q18
Standard +0.8
18
- 7 \end{array} \right)$$ (iv) Find the solution of the equation \(\mathbf { A x } = \left( \begin{array} { r } 3 \\ 7 \\ 18 \\ - 7 \end{array} \right)\) of the form \(\mathbf { x } = \left( \begin{array} { l } 4 \\ 9 \\ \alpha \\ \beta \end{array} \right)\), where \(\alpha\) and \(\beta\) are positive integers to be found.
\footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2018 June Q1
Standard +0.8
1 The curve \(C\) is defined parametrically by $$x = \mathrm { e } ^ { t } - t , \quad y = 4 \mathrm { e } ^ { \frac { 1 } { 2 } t }$$ Find the length of the arc of \(C\) from the point where \(t = 0\) to the point where \(t = 3\).
CAIE FP1 2018 June Q2
Standard +0.8
2 It is given that \(\mathrm { f } ( n ) = 2 ^ { 3 n } + 8 ^ { n - 1 }\). By simplifying \(\mathrm { f } ( k ) + \mathrm { f } ( k + 1 )\), or otherwise, prove by mathematical induction that \(\mathrm { f } ( n )\) is divisible by 9 for every positive integer \(n\).
CAIE FP1 2018 June Q3
Standard +0.8
3 The curve \(C\) has polar equation \(r = \cos 2 \theta\), for \(- \frac { 1 } { 4 } \pi \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  1. Sketch \(C\).
  2. Find the area of the region enclosed by \(C\), showing full working.
  3. Find a cartesian equation of \(C\).
CAIE FP1 2018 June Q4
Standard +0.3
4 It is given that the equation $$x ^ { 3 } - 21 x ^ { 2 } + k x - 216 = 0$$ where \(k\) is a constant, has real roots \(a , a r\) and \(a r ^ { - 1 }\).
  1. Find the numerical values of the roots.
  2. Deduce the value of \(k\).
CAIE FP1 2018 June Q5
Standard +0.8
5 Let \(S _ { n } = \sum _ { r = 1 } ^ { n } ( - 1 ) ^ { r - 1 } r ^ { 2 }\).
  1. Use the standard result for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) given in the List of Formulae (MF10) to show that $$S _ { 2 n } = - n ( 2 n + 1 )$$
  2. State the value of \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n } } { n ^ { 2 } }\) and find \(\lim _ { n \rightarrow \infty } \frac { S _ { 2 n + 1 } } { n ^ { 2 } }\).
CAIE FP1 2018 June Q6
Standard +0.3
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + b } { x + b }$$ where \(b\) is a positive constant.
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) does not intersect the \(x\)-axis.
  3. Justifying your answer, find the number of stationary points on \(C\).
  4. Sketch C. Your sketch should indicate the coordinates of any points of intersection with the \(y\)-axis. You do not need to find the coordinates of any stationary points.
CAIE FP1 2018 June Q7
Standard +0.3
7 Find the particular solution of the differential equation $$49 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 14 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 49 x + 735$$ given that when \(x = 0 , y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
CAIE FP1 2018 June Q8
Challenging +1.2
8 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r c r } 1 & 2 & \alpha & - 1 \\ 2 & 6 & - 3 & - 3 \\ 3 & 10 & - 6 & - 5 \end{array} \right)$$ and \(\alpha\) is a constant. When \(\alpha \neq 0\) the null space of T is denoted by \(K _ { 1 }\).
  1. Find a basis for \(K _ { 1 }\).
    When \(\alpha = 0\) the null space of T is denoted by \(K _ { 2 }\).
  2. Find a basis for \(K _ { 2 }\).
  3. Determine, justifying your answer, whether \(K _ { 1 }\) is a subspace of \(K _ { 2 }\).
CAIE FP1 2018 June Q9
Challenging +1.8
9
  1. Using the substitution \(u = \tan x\), or otherwise, find \(\int \sec ^ { 2 } x \tan ^ { 2 } x \mathrm {~d} x\).
    It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \tan ^ { 2 } x \mathrm {~d} x$$
  2. Using the result that \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sec x ) = \tan x \sec x\), show that, for \(n \geqslant 2\), $$( n + 1 ) I _ { n } = ( \sqrt { } 2 ) ^ { n - 2 } + ( n - 2 ) I _ { n - 2 }$$
  3. Hence find the mean value of \(\sec ^ { 4 } x \tan ^ { 2 } x\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\), giving your answer in exact form.