A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q7
CAIE FP1 2017 June — Question 7
Exam Board
CAIE
Module
FP1 (Further Pure Mathematics 1)
Year
2017
Session
June
Topic
Complex numbers 2
7
Use de Moivre's theorem to prove that $$\tan 4 \theta = \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta } .$$
Hence find the solutions of the equation $$t ^ { 4 } - 4 t ^ { 3 } - 6 t ^ { 2 } + 4 t + 1 = 0$$ giving your answers in the form \(\tan k \pi\), where \(k\) is a rational number.
This paper
(13 questions)
View full paper
Q1
Q2
Q3
6
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11 EITHER
Q11 OR
Q18