CAIE FP1 2017 June — Question 11

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionJune
TopicPolar coordinates

11 The curve \(C\) has polar equation \(r = a ( 1 + \sin \theta )\) for \(- \pi < \theta \leqslant \pi\), where \(a\) is a positive constant.
  1. Sketch \(C\).
  2. Find the area of the region enclosed by \(C\).
  3. Show that the length of the arc of \(C\) from the pole to the point furthest from the pole is given by $$s = ( \sqrt { } 2 ) a \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \sqrt { } ( 1 + \sin \theta ) \mathrm { d } \theta$$
  4. Show that the substitution \(u = 1 + \sin \theta\) reduces this integral for \(s\) to \(( \sqrt { } 2 ) a \int _ { 0 } ^ { 2 } \frac { 1 } { \sqrt { } ( 2 - u ) } \mathrm { d } u\). Hence evaluate \(s\).