| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2017 |
| Session | June |
| Marks | 6 |
| Topic | Proof by induction |
3 Prove, by mathematical induction, that \(\sum _ { r = 1 } ^ { n } r \ln \left( \frac { r + 1 } { r } \right) = \ln \left( \frac { ( n + 1 ) ^ { n } } { n ! } \right)\) for all positive integers \(n\). [6]