CAIE FP1 2017 June — Question 11 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionJune
Topic3x3 Matrices

The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & - 1 & 0 & 2
3 & - 1 & 4 & 0
5 & - 8 & - 6 & 19
- 2 & 3 & 2 & - 7 \end{array} \right) ,$$ represents a transformation from \(\mathbb { R } ^ { 4 }\) to \(\mathbb { R } ^ { 4 }\).
  1. Find the rank of \(\mathbf { A }\) and show that \(\left\{ \left( \begin{array} { r } 2
    2
    - 1
    0 \end{array} \right) , \left( \begin{array} { l } 1
    3
    0
    1 \end{array} \right) \right\}\) is a basis for the null space of the transformation.
  2. Show that if $$\mathbf { A x } = p \left( \begin{array} { r } 1
    3
    5
    - 2 \end{array} \right) + q \left( \begin{array} { r } - 1
    - 1
    - 8
    3 \end{array} \right) ,$$ where \(p\) and \(q\) are given real numbers, then $$\mathbf { x } = \left( \begin{array} { c } p + 2 \lambda + \mu
    q + 2 \lambda + 3 \mu
    - \lambda
    \mu \end{array} \right) ,$$ where \(\lambda\) and \(\mu\) are real numbers.
  3. Find the values of \(p\) and \(q\) such that $$p \left( \begin{array} { r } 1
    3
    5
    - 2 \end{array} \right) + q \left( \begin{array} { r } - 1
    - 1
    - 8
    3 \end{array} \right) = \left( \begin{array} { r } 3
    7