A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q2
CAIE FP1 2017 June — Question 2
Exam Board
CAIE
Module
FP1 (Further Pure Mathematics 1)
Year
2017
Session
June
Topic
Sequences and series, recurrence and convergence
2
Verify that \(\frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 r + 1 ) ( 2 r + 3 ) } { ( r + 1 ) ( r + 2 ) } - \frac { ( 2 r - 1 ) ( 2 r + 1 ) } { r ( r + 1 ) } \right\}\).
Hence show that \(\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 n + 1 ) ( 2 n + 3 ) } { ( n + 1 ) ( n + 2 ) } - \frac { 3 } { 2 } \right\}\).
Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) }\).
This paper
(13 questions)
View full paper
Q1
Q2
Q3
6
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11 EITHER
Q11 OR
Q18