CAIE FP1 2017 June — Question 2

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionJune
TopicSequences and series, recurrence and convergence

2
  1. Verify that \(\frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 r + 1 ) ( 2 r + 3 ) } { ( r + 1 ) ( r + 2 ) } - \frac { ( 2 r - 1 ) ( 2 r + 1 ) } { r ( r + 1 ) } \right\}\).
  2. Hence show that \(\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } \left\{ \frac { ( 2 n + 1 ) ( 2 n + 3 ) } { ( n + 1 ) ( n + 2 ) } - \frac { 3 } { 2 } \right\}\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 2 r + 1 } { r ( r + 1 ) ( r + 2 ) }\).