12 Fig. 12 shows a curve C with parametric equations \(x = 4 t ^ { 2 } , y = 4 t\). The point P , with parameter \(t\), is a general point on the curve. Q is the point on the line \(x + 4 = 0\) such that PQ is parallel to the \(x\)-axis. R is the point \(( 4,0 )\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{59e924e6-8fa9-4035-9173-705fce487bd9-6_766_584_413_255}
\captionsetup{labelformat=empty}
\caption{Fig. 12}
\end{figure}
- Show algebraically that P is equidistant from Q and R .
- Find a cartesian equation of C .