A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q6
OCR MEI Paper 1 2019 June — Question 6
Exam Board
OCR MEI
Module
Paper 1 (Paper 1)
Year
2019
Session
June
Topic
Reciprocal Trig & Identities
6
Prove that \(\frac { \sin \theta } { 1 - \cos \theta } - \frac { 1 } { \sin \theta } = \cot \theta\).
Hence find the exact roots of the equation \(\frac { \sin \theta } { 1 - \cos \theta } - \frac { 1 } { \sin \theta } = 3 \tan \theta\) in the interval \(0 \leqslant \theta \leqslant \pi\). Answer all the questions.
Section B (75 marks)
This paper
(16 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16