Express \(7 \cos x - 2 \sin x\) in the form \(R \cos ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving the exact value of \(R\) and the value of \(\alpha\) correct to 3 significant figures.
Give details of a sequence of two transformations which maps the curve \(y = \sec x\) onto the curve \(y = \frac { 1 } { 7 \cos x - 2 \sin x }\).