Questions — OCR (4619 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR C1 Q10
10.
\includegraphics[max width=\textwidth, alt={}, center]{76efaf91-a6f3-4493-88d4-3654b023441d-3_646_773_986_477} The diagram shows the curve \(y = x ^ { 2 } - 3 x + 5\) and the straight line \(y = 2 x + 1\). The curve and line intersect at the points \(P\) and \(Q\).
  1. Using algebra, show that \(P\) has coordinates \(( 1,3 )\) and find the coordinates of \(Q\).
  2. Find an equation for the tangent to the curve at \(P\).
  3. Show that the tangent to the curve at \(Q\) has the equation \(y = 5 x - 11\).
  4. Find the coordinates of the point where the tangent to the curve at \(P\) intersects the tangent to the curve at \(Q\).
OCR S2 2014 June Q1
5 marks
1 The random variable \(F\) has the distribution \(B ( 50,0.7 )\). Use a suitable approximation to find \(\mathbf { P } \boldsymbol { ( } \mathbf { F > } \mathbf { 4 0 } \boldsymbol { ) }\). [5]
OCR S2 2014 June Q2
7 marks
2 The events organiser of a school sends out invitations to \(\mathbf { 1 5 0 }\) people to attend its prize day. From past experience the organiser knows that the number of those who will come to the prize day can be modelled by the distribution \(\mathbf { B } ( \mathbf { 1 5 0 } , \mathbf { 0 . 9 8 } )\).
[0pt]
  1. Explain why this distribution cannot be well approximated by either a normal or a Poisson distribution. [3]
    [0pt]
  2. By considering the number of those who do not attend, use a suitable approximation to find the probability that fewer than 146 people attend. [4]
OCR S2 2014 June Q3
7 marks
3 The random variable \(G\) has the distribution \(\mathbf { N } \left( \mu , \boldsymbol { \sigma } ^ { 2 } \right)\). One hundred observations of \(G\) are taken. The results are summarised in the following table.
Interval\(G < 40.0\)\(40.0 \leqslant G < 60.0\)\(G \geqslant 60.0\)
Frequency175825
  1. By considering \(\mathrm { P } ( G < 40.0 )\), write down an equation involving \(\mu\) and \(\sigma\). [2]
  2. Find a second equation involving \(\mu\) and \(\sigma\). Hence calculate values for \(\mu\) and \(\sigma\). [4]
    [0pt]
  3. Explain why your answers are only estimates. [1]
OCR S2 2014 June Q4
7 marks
4 A zoologist investigates the number of snakes found in a given region of land. The zoologist intends to use a Poisson distribution to model the number of snakes.
[0pt]
  1. One condition for a Poisson distribution to be valid is that snakes must occur at constant average rate. State another condition needed for a Poisson distribution to be valid. [1] Assume now that the number of snakes found in 1 acre of a region can be modelled by the distribution Po(4).
    [0pt]
  2. Find the probability that, in 1 acre of the region, at least 6 snakes are found. [2]
    [0pt]
  3. Find the probability that, in 0.77 acres of the region, the number of snakes found is either 2 or 3. [4]
OCR S2 2014 June Q5
13 marks
5 A continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 2 } \pi \sin ( \pi x ) & 0 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}$$
  1. Show that this is a valid probability density function. [4]
  2. Sketch the curve \(\boldsymbol { y } = \mathbf { f } ( \boldsymbol { x } )\) and write down the value of \(\mathbf { E } \boldsymbol { ( } \boldsymbol { X } \boldsymbol { ) }\). [3]
  3. Find the value \(q\) such that \(\mathrm { P } ( X > q ) = 0.75\). [3]
  4. Write down an expression, including an integral, for \(\operatorname { Var } ( X )\). (Do not attempt to evaluate the integral.) [2]
  5. A student states that " \(X\) is more likely to occur when \(x\) is close to \(\mathrm { E } ( X )\)." Give an improved version of this statement. [1]
OCR S2 2014 June Q6
12 marks
6 In a city the proportion of inhabitants from ethnic group \(\mathbf { Z }\) is known to be \(\mathbf { 0 . 4 }\). A sample of \(\mathbf { 1 2 }\) employees of a large company in this city is obtained and it is found that 2 of them are from ethnic group \(Z\). A test is carried out, at the \(5 \%\) significance level, of whether the proportion of employees in this company from ethnic group \(Z\) is less than in the city as a whole.
[0pt]
  1. State an assumption that must be made about the sample for a significance test to be valid. [1]
    [0pt]
  2. Describe briefly an appropriate way of obtaining the sample. [2]
    [0pt]
  3. Carry out the test. [7]
  4. A manager believes that the company discriminates against ethnic group \(Z\). Explain whether carrying out the test at the 10\% significance level would be more supportive or less supportive of the manager's belief. [2]
OCR S2 2014 June Q7
15 marks
7 An examination board is developing a new syllabus and wants to know if the question papers are the right length. A random sample of 50 candidates was given a pre-test on a dummy paper. The times, \(t\) minutes, taken by these candidates to complete the paper can be summarised by
\(n = 50\),
\(\sum \boldsymbol { t } = \mathbf { 4 0 5 0 }\),
\(\sum \boldsymbol { t } ^ { \mathbf { 2 } } \boldsymbol { = } \mathbf { 3 2 9 8 0 0 }\).
Assume that times are normally distributed.
[0pt]
  1. Estimate the proportion of candidates that could not complete the paper within 90 minutes. [6]
  2. Test, at the \(10 \%\) significance level, whether the mean time for all candidates to complete this paper is \(\mathbf { 8 0 }\) minutes. Use a two-tail test. [7]
  3. Explain whether the assumption that times are normally distributed is necessary in answering
    (a) part (i),
    [0pt] (b) part (ii). [2]
OCR S2 2014 June Q8
6 marks
8 The random variable \(W\) has the distribution \(\operatorname { Po } ( \lambda )\). A significance test is carried out of the null hypothesis \(\mathrm { H } _ { 0 } : \lambda = 3.60\), against the alternative hypothesis \(\mathrm { H } _ { 1 } : \lambda < 3.60\). The test is based on a single observation of \(W\). The critical region is \(W = 0\).
[0pt]
  1. Find the significance level of the test. [2]
  2. It is known that, when \(\boldsymbol { \lambda } = \boldsymbol { \lambda } _ { \mathbf { 0 } }\), the probability that the test results in a Type II error is \(\mathbf { 0 . 8 }\). Find the value of \(\lambda _ { 0 }\). [4] \section*{END OF QUESTION PAPER}
OCR S2 Specimen Q1
1 The standard deviation of a random variable \(F\) is 12.0. The mean of \(n\) independent observations of \(F\) is denoted by \(\bar { F }\).
  1. Given that the standard deviation of \(\bar { F }\) is 1.50 , find the value of \(n\).
  2. For this value of \(n\), state, with justification, what can be said about the distribution of \(\bar { F }\).
OCR S2 Specimen Q2
2 A certain neighbourhood contains many small houses (with small gardens) and a few large houses (with large gardens). A sample survey of all houses is to be carried out in this neighbourhood. A student suggests that the sample could be selected by sticking a pin into a map of the neighbourhood the requisite number of times, while blindfolded.
  1. Give two reasons why this method does not produce a random sample.
  2. Describe a better method.
OCR S2 Specimen Q3
3 Sixty people each make two throws with a fair six-sided die.
  1. State the probability of one particular person obtaining two sixes.
  2. Using a suitable approximation, calculate the probability that at least four of the sixty obtain two sixes.
OCR S2 Specimen Q4
4 The random variable \(G\) has mean 20.0 and standard deviation \(\sigma\). It is given that \(\mathrm { P } ( G > 15.0 ) = 0.6\). Assume that \(G\) is normally distributed.
  1. (a) Find the value of \(\sigma\).
    (b) Given that \(\mathrm { P } ( G > g ) = 0.4\), find the value of \(\mathrm { P } ( G > 2 g )\).
  2. It is known that no values of \(G\) are ever negative. State with a reason what this tells you about the assumption that \(G\) is normally distributed.
OCR S2 Specimen Q5
5 The mean solubility rating of widgets inserted into beer cans is thought to be 84.0, in appropriate units. A random sample of 50 widgets is taken. The solubility ratings, \(x\), are summarised by $$n = 50 , \quad \Sigma x = 4070 , \quad \Sigma x ^ { 2 } = 336100$$ Test, at the \(5 \%\) significance level, whether the mean solubility rating is less than 84.0 .
OCR S2 Specimen Q6
6 On average a motorway police force records one car that has run out of petrol every two days.
  1. (a) Using a Poisson distribution, calculate the probability that, in one randomly chosen day, the police force records exactly two cars that have run out of petrol.
    (b) Using a Poisson distribution and a suitable approximation to the binomial distribution, calculate the probability that, in one year of 365 days, there are fewer than 205 days on which the police force records no cars that have run out of petrol.
  2. State an assumption needed for the Poisson distribution to be appropriate in part (i), and explain why this assumption is unlikely to be valid.
OCR S2 Specimen Q7
7 The time, in minutes, for which a customer is prepared to wait on a telephone complaints line is modelled by the random variable \(X\). The probability density function of \(X\) is given by $$\mathrm { f } ( x ) = \begin{cases} k x \left( 9 - x ^ { 2 } \right) & 0 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 4 } { 81 }\).
  2. Find \(\mathrm { E } ( X )\).
  3. (a) Show that the value \(y\) which satisfies \(\mathrm { P } ( X < y ) = \frac { 3 } { 5 }\) satisfies $$5 y ^ { 4 } - 90 y ^ { 2 } + 243 = 0 .$$ (b) Using the substitution \(w = y ^ { 2 }\), or otherwise, solve the equation in part (a) to find the value of \(y\).
OCR S2 Specimen Q8
8 The proportion of left-handed adults in a country is known to be \(15 \%\). It is suggested that for mathematicians the proportion is greater than \(15 \%\). A random sample of 12 members of a university mathematics department is taken, and it is found to include five who are left-handed.
  1. Stating your hypotheses, test whether the suggestion is justified, using a significance level as close to \(5 \%\) as possible.
  2. In fact the significance test cannot be carried out at a significance level of exactly \(5 \%\). State the probability of making a Type I error in the test.
  3. Find the probability of making a Type II error in the test for the case when the proportion of mathematicians who are left-handed is actually \(20 \%\).
  4. Determine, as accurately as the tables of cumulative binomial probabilities allow, the actual proportion of mathematicians who are left-handed for which the probability of making a Type II error in the test is 0.01 .
OCR S3 2006 January Q1
1 In order to judge the support for a new method of collecting household waste, a city council arranged a survey of 400 householders selected at random. The results showed that 186 householders were in favour of the new method.
  1. Calculate a 95\% confidence interval for the proportion of all householders who are in favour of the new method. A city councillor said he believed that as many householders were in favour of the new method as were against it.
  2. Comment on the councillor's belief.
OCR S3 2006 January Q2
2 A particular type of engine used in rockets is designed to have a mean lifetime of at least 2000 hours. A check of four randomly chosen engines yielded the following lifetimes in hours. $$\begin{array} { l l l l } 1896.4 & 2131.5 & 1903.3 & 1901.6 \end{array}$$ A significance test of whether engines meet the design is carried out. It may be assumed that lifetimes have a normal distribution.
  1. Give a reason why a \(t\)-test should be used.
  2. Carry out the test at the \(10 \%\) significance level.
OCR S3 2006 January Q3
3 For a restaurant with a home-delivery service, the delivery time in minutes can be modelled by a continuous random variable \(T\) with probability density function given by $$f ( t ) = \begin{cases} \frac { \pi } { 90 } \sin \left( \frac { \pi t } { 60 } \right) & 20 \leqslant t \leqslant 60
0 & \text { otherwise. } \end{cases}$$
  1. Given that \(20 \leqslant a \leqslant 60\), show that \(\mathrm { P } ( T \leqslant a ) = \frac { 1 } { 3 } \left( 1 - 2 \cos \left( \frac { \pi a } { 60 } \right) \right)\). There is a delivery charge of \(\pounds 3\) but this is reduced to \(\pounds 2\) if the delivery time exceeds a minutes.
  2. Find the value of \(a\) for which the expected value of the delivery charge for a home-delivery is £2.80.
OCR S3 2006 January Q4
4 A multi-storey car park has two entrances and one exit. During a morning period the numbers of cars using the two entrances are independent Poisson variables with means 2.3 and 3.2 per minute. The number leaving is an independent Poisson variable with mean 1.8 per minute. For a randomly chosen 10-minute period the total number of cars that enter and the number of cars that leave are denoted by the random variables \(X\) and \(Y\) respectively.
  1. Use a suitable approximation to calculate \(\mathrm { P } ( X \geqslant 40 )\).
  2. Calculate \(\mathrm { E } ( X - Y )\) and \(\operatorname { Var } ( X - Y )\).
  3. State, giving a reason, whether \(X - Y\) has a Poisson distribution.
OCR S3 2006 January Q5
5 The continuous random variable \(X\) has cumulative distribution function given by $$F ( x ) = \begin{cases} 0 & x < 1 ,
\frac { 1 } { 8 } ( x - 1 ) ^ { 2 } & 1 \leqslant x < 3 ,
a ( x - 2 ) & 3 \leqslant x < 4 ,
1 & x \geqslant 4 , \end{cases}$$ where \(a\) is a positive constant.
  1. Find the value of \(a\).
  2. Verify that \(C _ { X } ( 8 )\), the 8th percentile of \(X\), is 1.8 .
  3. Find the cumulative distribution function of \(Y\), where \(Y = \sqrt { X - 1 }\).
  4. Find \(C _ { Y } ( 8 )\) and verify that \(C _ { Y } ( 8 ) = \sqrt { C _ { X } ( 8 ) - 1 }\).
OCR S3 2006 January Q6
6 A company with a large fleet of cars compared two types of tyres, \(A\) and \(B\). They measured the stopping distances of cars when travelling at a fixed speed on a dry road. They selected 20 cars at random from the fleet and divided them randomly into two groups of 10 , one group being fitted with tyres of type \(A\) and the other group with tyres of type \(B\). One of the cars fitted with tyres of type \(A\) broke down so these tyres were tested on only 9 cars. The stopping distances, \(x\) metres, for the two samples are summarised by $$n _ { A } = 9 , \quad \bar { x } _ { A } = 17.30 , \quad s _ { A } ^ { 2 } = 0.7400 , \quad n _ { B } = 10 , \quad \bar { x } _ { B } = 14.74 , \quad s _ { B } ^ { 2 } = 0.8160 ,$$ where \(s _ { A } ^ { 2 }\) and \(s _ { B } ^ { 2 }\) are unbiased estimates of the two population variances.
It is given that the two populations have the same variance.
  1. Show that an unbiased estimate of this variance is 0.780 , correct to 3 decimal places. The population mean stopping distances for cars with tyres of types \(A\) and \(B\) are denoted by \(\mu _ { A }\) metres and \(\mu _ { B }\) metres respectively.
  2. Stating any further assumption you need to make, calculate a \(98 \%\) confidence interval for \(\mu _ { A } - \mu _ { B }\). The manufacturers of Type \(B\) tyres assert that \(\mu _ { B } < \mu _ { A } - 2\).
  3. Carry out a significance test of this assertion at the \(5 \%\) significance level. \section*{[Question 7 is printed overleaf.]}
OCR S3 2007 January Q1
1 The marks obtained by a randomly chosen student in the two papers of an examination are denoted by the random variables \(X\) and \(Y\), where \(X \sim \mathrm {~N} ( 45,81 )\) and \(Y \sim \mathrm {~N} ( 33,63 )\). The student's overall mark for the examination, \(T\), is given by \(T = X + \lambda Y\), where the constant \(\lambda\) is chosen such that \(\mathrm { E } ( T ) = 100\).
  1. Show that \(\lambda = \frac { 5 } { 3 }\).
  2. Assuming that \(X\) and \(Y\) are independent, state the distribution of \(T\), giving the values of its parameters.
  3. Comment on the assumption of independence.
OCR S3 2007 January Q2
2 The continuous random variable \(X\) takes values in the interval \(0 \leqslant x \leqslant 3\) only with probability density function f . The graph of \(y = \mathrm { f } ( x )\) consists of the two line segments shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{4a6d94a2-66e1-449a-ac0e-1fbada74bb3b-2_524_1287_950_429}
  1. Show that \(a = \frac { 2 } { 3 }\).
  2. Find the equations of the two line segments.
  3. Hence write down the probability density function of \(X\).
  4. Find \(\mathrm { E } ( X )\).