OCR S3 2006 January — Question 5

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2006
SessionJanuary
TopicCumulative distribution functions
TypeMulti-part piecewise CDF

5 The continuous random variable \(X\) has cumulative distribution function given by $$F ( x ) = \begin{cases} 0 & x < 1 ,
\frac { 1 } { 8 } ( x - 1 ) ^ { 2 } & 1 \leqslant x < 3 ,
a ( x - 2 ) & 3 \leqslant x < 4 ,
1 & x \geqslant 4 , \end{cases}$$ where \(a\) is a positive constant.
  1. Find the value of \(a\).
  2. Verify that \(C _ { X } ( 8 )\), the 8th percentile of \(X\), is 1.8 .
  3. Find the cumulative distribution function of \(Y\), where \(Y = \sqrt { X - 1 }\).
  4. Find \(C _ { Y } ( 8 )\) and verify that \(C _ { Y } ( 8 ) = \sqrt { C _ { X } ( 8 ) - 1 }\).