7 The time, in minutes, for which a customer is prepared to wait on a telephone complaints line is modelled by the random variable \(X\). The probability density function of \(X\) is given by
$$\mathrm { f } ( x ) = \begin{cases} k x \left( 9 - x ^ { 2 } \right) & 0 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$
where \(k\) is a constant.
- Show that \(k = \frac { 4 } { 81 }\).
- Find \(\mathrm { E } ( X )\).
- (a) Show that the value \(y\) which satisfies \(\mathrm { P } ( X < y ) = \frac { 3 } { 5 }\) satisfies
$$5 y ^ { 4 } - 90 y ^ { 2 } + 243 = 0 .$$
(b) Using the substitution \(w = y ^ { 2 }\), or otherwise, solve the equation in part (a) to find the value of \(y\).