| \(w\) | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( W = w )\) | 0.25 | 0.36 | \(x\) | \(x ^ { 2 }\) |
| \(T\) | 17 | 21 | 25 | 26 | 27 | 27 | 29 | 30 | 30 |
| \(C\) | 21 | 16 | 20 | 38 | 32 | 37 | 35 | 39 | 42 |
| D | D | D | D | D | D | D |
| D | C | C | C | C | C | D |
| D | C | B | B | B | C | D |
| D | C | B | A | B | C | D |
| D | C | B | B | B | C | D |
| D | C | C | C | C | C | D |
| D | D | D | D | D | D | D |
| Region | A | B | C | D |
| Number of squares | 1 | 8 | 16 | 24 |
| Number of pins | 6 | 21 | 33 | 38 |
| Score, \(N\) | 1 | 2 | 3 | 4 | 5 |
| Probability | 0.3 | 0.2 | 0.2 | \(x\) | \(y\) |
| \cline { 2 - 5 } \multicolumn{1}{c|}{} | Subject | Mathematics | English | Physics | ||
\multirow{3}{*}{
| Year 7 | 17 | 16 | 7 | ||
| \cline { 2 - 5 } | Year 12 | 13 | 2 | 5 |
| \(w\) | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( W = w )\) | 0.25 | 0.36 | \(x\) | \(x ^ { 2 }\) |
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||
| 1 | (a) | \(\begin{aligned} | 0.25 + 0.36 + x + x ^ { 2 } = 1 | ||||||||||||||||||
| x ^ { 2 } + x - 0.39 = 0 | |||||||||||||||||||||
| x = 0.3 \text { (or } - 1.3 \text { ) } | |||||||||||||||||||||
| x \text { cannot be negative } | |||||||||||||||||||||
| \mathrm { E } ( W ) = 2.23 | |||||||||||||||||||||
| \mathrm { E } \left( W ^ { 2 } \right) = \Sigma w ^ { 2 } \mathrm { p } ( w ) \quad [ = 5.83 ] | |||||||||||||||||||||
| \text { Subtract } [ \mathrm { E } ( W ) ] ^ { 2 } \text { to get } \mathbf { 0 . 8 5 7 1 } \end{aligned}\) | \(\begin{gathered} \text { M1 } | ||||||||||||||||||||
| \text { A1 } | |||||||||||||||||||||
| \text { A1 } | |||||||||||||||||||||
| \text { B1ft } | |||||||||||||||||||||
| \text { B1 } | |||||||||||||||||||||
| \text { M1 } | |||||||||||||||||||||
| \text { A1 } | |||||||||||||||||||||
| { [ 7 ] } \end{gathered}\) |
|
|
| ||||||||||||||||||
| 1 | (b) | \(9 \times 0.8571 = 7.7139\) |
| 1.1b | Allow 7.71 or 7.714 | ||||||||||||||||
| 2 | (a) | Flaws must occur at constant average rate (uniform rate) |
| 1.2 |
| Not "constant rate" or "average constant rate". | |||||||||||||||
| 2 | (b) | \(\operatorname { Po(2.1)~or~ } e ^ { - \lambda } \frac { \lambda ^ { 3 } } { 3 ! }\) |
|
| Po(2.1) stated or implied, or formula with \(\lambda = 2.1\) stated Awrt 0.189 | ||||||||||||||||
| 2 | (c) |
|
|
|
|
| |||||||||||||||
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||||||||||
| 3 | (a) | 0.4(00) |
|
| SC: if B0, give SC B1 for two of \(S _ { x x } = 12500 , S _ { y y } = 1600 , S _ { x y } = 1790\) and \(S _ { x y } / \sqrt { } \left( S _ { x x } S _ { y y } \right)\) | Also allow SC B1 for equivalent methods using Covariance \ | SDs | ||||||||||||||||||||||
| 3 | (b) | Data needs to have a bivariate normal distribution |
| 1.2 | Needs "bivariate normal" or clear equivalent. Not just "both normally distributed" | Allow "scatter diagram forms ellipse" | |||||||||||||||||||||||
| 3 | (c) |
|
|
|
|
| |||||||||||||||||||||||
| 3 | (d) | It makes no difference as this is a linear transformation |
| 2.2a | Need both "unchanged" oe and reason, need "linear" or exact equivalent | "oe" includes "their 0.4" | |||||||||||||||||||||||
| 4 | (a) | Neither |
| 2.5 | OE | Not "neither is independent of the other" | |||||||||||||||||||||||
| 4 | (b) | \(c = 2.848 - 0.1567 m \quad \mathbf { B C }\) |
|
|
|
| |||||||||||||||||||||||
| Question | Answer | Marks | AO | Guidance | ||||||||||||||
| 4 | (c) | \(a\) unchanged, \(b\) multiplied by 2.2 (allow " \(a\) unchanged, \(b\) increases", etc) | B1 [1] | 2.2a | oe, e.g. \(c = 2.848 - 0.345 m\); \(m = 7.114 - 2.196 c\) | SC: \(m\) on \(c\) in (b): Both divided by 2.2 B1 | ||||||||||||
| 4 | (d) |
|
|
| Needs M2 and "minimises" and "sums of squares" oe |
| ||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| oe | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||||||
| 1 | (a) |
|
|
|
| ||||||||||||||||||||
| 1 | (b) |
|
|
|
| ||||||||||||||||||||
| 1 | (c) | Orders on one day are independent of orders on the other |
| 3.2b | Use "orders independent", clearly referred to the two different days, needs context [not "events"], and nothing else | Not anything affecting given separate Poissons, such as "orders must be independent" or "constant average rate". | |||||||||||||||||||
| \multirow[t]{3}{*}{2} | \multirow[t]{3}{*}{(a)} | \multirow{3}{*}{} |
|
|
|
| 3/3 for \(\frac { 1 } { 30 }\) www | ||||||||||||||||||
| Alternative: \(7 \times \frac { 6 } { 10 } \times \frac { 4 } { 9 } \times \frac { 5 } { 8 } \times \frac { 3 } { 7 } \times \frac { 4 } { 6 } \times \frac { 2 } { 5 } \times \frac { 3 } { 4 } \times \frac { 1 } { 3 } \times \frac { 2 } { 2 } \times \frac { 1 } { 1 }\) |
|
| |||||||||||||||||||||||
| [3] | |||||||||||||||||||||||||
| \multirow[t]{3}{*}{2} | \multirow[t]{3}{*}{(b)} | \multirow{3}{*}{} |
|
|
|
|
| ||||||||||||||||||
|
| Signs alternating, at least one term \(\sqrt { }\) Allow one term omitted or wrong Correct answer | |||||||||||||||||||||||
| [3] | |||||||||||||||||||||||||
| Three together: \(7 \times 6 \times \frac { 6 ! 4 ! } { 10 ! } = \frac { 1 } { 5 }\) | Two pairs: \(\frac { 7 \times 6 } { 2 } \times \frac { 6 ! 4 ! } { 10 ! }\) | \(\frac { 1 } { 10 }\) | One pair: \(7 \times \frac { 6 \times 5 } { 2 } \times \frac { 6 ! 4 ! } { 10 ! } = \frac { 1 } { 2 }\) | ||||||||||||||||||||||
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||||||
| 3 | (a) |
|
|
|
|
| |||||||||||||||||||
| 3 | (b) | (i) | -0.534 |
|
| SC: if B0, give B1 for two of 1440, 2066, -921 and \(S _ { x y } / \sqrt { } \left( S _ { x x } S _ { y y } \right)\) | -0.53: B1 | ||||||||||||||||||
| 3 | (b) | (ii) | 6 candidates did very well or very badly on both papers; middle 10 tended to do badly on one paper and well on the other |
| 2.4 | Correct inference about scores oe, not "correlation/association/value of \(r\) ". Not "outliers" or "anomalies". | Allow inference for one group only, provided it is clearly for only one group \ | any ref to other group is not wrong | |||||||||||||||||
| 4 | (a) | \(10 p ( 1 - p )\) |
| 1.2 | Allow \(10 p q\) oe, e.g. \(10 p - 10 p ^ { 2 }\) | Not just \(n p ( 1 - p )\) | |||||||||||||||||||
| 4 | (b) | (i) |
|
|
|
| Or \(1 - 0.3 \left( 1 + 0.7 + 0.7 ^ { 2 } + 0.7 ^ { 3 } \right)\) Allow M1 if also \(0.3 \times 0.7 ^ { 4 }\) [0.15 is from binomial] | ||||||||||||||||||
| 4 | (b) | (ii) | \(q / p ^ { 2 } = \frac { 70 } { 9 }\) or \(7.777 \ldots\) |
| 1.1 | Allow 7.78, 7.778, etc | Allow 8 only if evidence, e.g. ( \(1 - 0.3\) )/ \(0.3 ^ { 2 }\) | ||||||||||||||||||
| 4 | (c) | \(\begin{aligned} | ( 1 - p ) ^ { 2 } p = \frac { 4 } { 25 } p | ||||||||||||||||||||||
| p = 0 \text { or } ( 1 - p ) ^ { 2 } = \frac { 4 } { 25 } \quad ( p \neq 0 ) | |||||||||||||||||||||||||
| ( 1 - p ) = \pm \frac { 2 } { 5 } | |||||||||||||||||||||||||
| p \neq \frac { 7 } { 5 } | |||||||||||||||||||||||||
| p = \frac { 3 } { 5 } \end{aligned}\) |
|
|
|
| |||||||||||||||||||||
| \(x\) | 7 | 8 | 12 | 6 | 4 |
| \(y\) | 20 | 16 | 7 | 17 | 23 |
| Account | A | B | C | D | E | F | G | H |
| \(p\) | 1.6 | 2.1 | 2.4 | 2.7 | 2.8 | 3.3 | 5.2 | 8.4 |
| \(q\) | 1.6 | 2.3 | 2.2 | 2.2 | 3.1 | 2.9 | 7.6 | 4.8 |
| Question | Solution | Marks | AOs | Guidance | ||||||||||||||||||||||
| 1 | (a) | -0.954 BC | B2 [2] | 1.1 1.1 | SC: If B0, give B1 if two of 7.04, 29.0[4], -13.6[4] (or 35.2, 145[.2], -68.2) seen | |||||||||||||||||||||
| 1 | (b) | Points lie close to a straight line Line has negative gradient | B1 B1 [2] | 2.2b 1.1 | Must refer to line, not just "negative correlation" | |||||||||||||||||||||
| 1 | (c) | No, it will be the same as \(x \rightarrow a\) is a linear transformation | B1 [1] | 2.2a | OE. Either "same" with correct reason, or "disagree" with correct reason. Allow any clear valid technical term | |||||||||||||||||||||
| 2 | (a) | Neither | B1 [1] | 1.2 | ||||||||||||||||||||||
| 2 | (b) | \(q = 1.13 + 0.620 p\) | B1B1 B1 [3] | 1.1,1.1 1.1 | 0.62(0) correct; both numbers correct Fully correct answer including letters | |||||||||||||||||||||
| 2 | (c) | (i) | 2.68 | B1ft [1] | 1.1 | awrt 2.68, ft on their (b) if letters correct | ||||||||||||||||||||
| 2 | (c) | (ii) | 2.5 is within data range, and points (here) are close to line/well correlated | B1 B1 [2] | 2.2b 2.2b | At least one reason, allow "no because points not close to line" Full argument, two reasons needed | ||||||||||||||||||||
| 2 | (d) |
| M1 A1 [2] | 2.3 1.1 | Reason for not very reliable (not "extrapolation") Full argument and conclusion, not too assertive (not wholly unreliable!) | |||||||||||||||||||||
| 3 | (a) | Expected frequency for Middle/25 to 60 is 4.4 which is < 5 so must combine cells | B1*ft depB1 [2] | 2.4 3.5b | Correctly obtain this \(F _ { E }\), ft on addition errors " < 5" explicit and correct deduction | |||||||||||||||||||||
| 3 | (b) |
| B1 | 1.1 |
| |||||||||||||||||||||
| Question | Solution | Marks | AOs | Guidance | ||||||||||||||||||||||||||||||
| 3 | (c) |
|
|
|
| |||||||||||||||||||||||||||||
| 3 | (d) | The two biggest contributions to \(\chi ^ { 2 }\) are both for the late session ... ... when the proportion of younger people is higher, and of older people is lower, than the null hypothesis would suggest. |
|
|
| |||||||||||||||||||||||||||||
| \multirow[t]{2}{*}{4} | \multirow{2}{*}{} | \multirow{2}{*}{OR:} |
|
|
|
| ||||||||||||||||||||||||||||
| \(\frac { 2 m ( 2 m - 1 ) \times m \times 3 ! } { 3 m ( 3 m - 1 ) ( 3 m - 2 ) \times 2 }\) then as above |
| |||||||||||||||||||||||||||||||||