OCR FS1 AS 2017 December — Question 4

Exam BoardOCR
ModuleFS1 AS (Further Statistics 1 AS)
Year2017
SessionDecember
TopicUniform Distribution
TypeDerive general variance formula

4 The discrete random variable \(X\) has the distribution \(\mathrm { U } ( n )\).
  1. Use the results \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\) and \(\mathrm { E } ( X ) = \frac { n + 1 } { 2 }\) to show that \(\operatorname { Var } ( X ) = \frac { 1 } { 12 } \left( n ^ { 2 } - 1 \right)\). It is given that \(\mathrm { E } ( X ) = 13\).
  2. Find the value of \(n\).
  3. Find \(\mathrm { P } ( X < 7.5 )\). It is given that \(\mathrm { E } ( a X + b ) = 10\) and \(\operatorname { Var } ( a X + b ) = 117\), where \(a\) and \(b\) are positive.
  4. Calculate the value of \(a\) and the value of \(b\).