OCR FS1 AS 2017 December — Question 5

Exam BoardOCR
ModuleFS1 AS (Further Statistics 1 AS)
Year2017
SessionDecember
TopicBivariate data
TypeIdentify outliers or unusual points

5 A shop manager recorded the maximum daytime temperature \(T ^ { \circ } \mathrm { C }\) and the number \(C\) of ice creams sold on 9 summer days. The results are given in the table and illustrated in the scatter diagram.
\(T\)172125262727293030
\(C\)211620383237353942
\includegraphics[max width=\textwidth, alt={}]{64d7ed6d-fadd-4c59-afb0-97d1788ba369-3_661_1189_1320_431}
$$n = 9 , \Sigma t = 232 , \Sigma c = 280 , \Sigma t ^ { 2 } = 6130 , \Sigma c ^ { 2 } = 9444 , \Sigma t c = 7489$$
  1. State, with a reason, whether one of the variables \(C\) or \(T\) is likely to be dependent upon the other.
  2. Calculate Pearson's product-moment correlation coefficient \(r\) for the data.
  3. State with a reason what the value of \(r\) would have been if the temperature had been measured in \({ } ^ { \circ } \mathrm { F }\) rather than \({ } ^ { \circ } \mathrm { C }\).
  4. Calculate the equation of the least squares regression line of \(c\) on \(t\).
  5. The regression line is drawn on the copy of the scatter diagram in the Printed Answer Booklet. Use this diagram to explain what is meant by "least squares".