OCR FS1 AS 2021 June — Question 3 38 marks

Exam BoardOCR
ModuleFS1 AS (Further Statistics 1 AS)
Year2021
SessionJune
Marks38
TopicChi-squared distribution

3 At a cinema there are three film sessions each Saturday, "early", "middle" and "late". The numbers of the audience, in different age groups, at the three showings on a randomly chosen Saturday are given in Table 1. \begin{table}[h] \end{table}
QuestionSolutionMarksAOsGuidance
1(a)-0.954 BCB2 [2]1.1 1.1SC: If B0, give B1 if two of 7.04, 29.0[4], -13.6[4] (or 35.2, 145[.2], -68.2) seen
1(b)Points lie close to a straight line Line has negative gradientB1 B1 [2]2.2b 1.1Must refer to line, not just "negative correlation"
1(c)No, it will be the same as \(x \rightarrow a\) is a linear transformationB1 [1]2.2aOE. Either "same" with correct reason, or "disagree" with correct reason. Allow any clear valid technical term
2(a)NeitherB1 [1]1.2
2(b)\(q = 1.13 + 0.620 p\)B1B1 B1 [3]1.1,1.1 1.10.62(0) correct; both numbers correct Fully correct answer including letters
2(c)(i)2.68B1ft [1]1.1awrt 2.68, ft on their (b) if letters correct
2(c)(ii)2.5 is within data range, and points (here) are close to line/well correlatedB1 B1 [2]2.2b 2.2bAt least one reason, allow "no because points not close to line" Full argument, two reasons needed
2(d)
Not much data here/points scattered/ possible outliers
So not very reliable
M1 A1 [2]2.3 1.1Reason for not very reliable (not "extrapolation") Full argument and conclusion, not too assertive (not wholly unreliable!)
3(a)Expected frequency for Middle/25 to 60 is 4.4 which is < 5 so must combine cellsB1*ft depB1 [2]2.4 3.5bCorrectly obtain this \(F _ { E }\), ft on addition errors " < 5" explicit and correct deduction
3(b)
EarlyMiddleLate
29.423.131.5
26.620.928.5
EarlyMiddleLate
0.99180.41602.2937
1.09620.45982.5351
B11.1
Both, allow 28.4 for 28.5
awrt 2.29, but allow 2.3 In range [2.53, 2.54]
QuestionSolutionMarksAOsGuidance
3(c)
\(\mathrm { H } _ { 0 }\) : no association between session and age group. \(\mathrm { H } _ { 1 }\) : some association
\(\Sigma X ^ { 2 } = 7.793\)
\(v = 2 , \chi ^ { 2 } ( 2 ) _ { \text {crit } } = 5.991\)
Reject \(\mathrm { H } _ { 0 }\).
Significant evidence of association between session attended and age group.
B1
B1
B1
M1ft
A1ft [5]
1.1
1.1
1.1
1.1
2.2b
Both. Allow "independent" etc
Correct value of \(X ^ { 2 }\), awrt 7.79 (allow even if wrong in (b))
Correct CV and comparison
Correct first conclusion, FT on their TS only
Contextualised, not too assertive
3(d)The two biggest contributions to \(\chi ^ { 2 }\) are both for the late session ... ... when the proportion of younger people is higher, and of older people is lower, than the null hypothesis would suggest.
M1ft
A1ft
[2]
1.1
2.4
Refer to biggest contribution(s), FT on their answers to (b), needs "reject \(\mathrm { H } _ { 0 }\) "
Full answer, referring to at least one cell (ignore comments on next highest cells)
\multirow[t]{2}{*}{4}\multirow{2}{*}{}\multirow{2}{*}{OR:}
\(\frac { { } ^ { 2 m } C _ { 2 } \times m } { { } ^ { 3 m } C _ { 3 } }\)
\(= \frac { 2 m ( 2 m - 1 ) } { 2 } \times m \div \frac { 3 m ( 3 m - 1 ) ( 3 m - 2 ) } { 6 }\)
\(= \frac { 2 m ( 2 m - 1 ) } { ( 3 m - 1 ) ( 3 m - 2 ) }\) \(\frac { 2 m ( 2 m - 1 ) } { ( 3 m - 1 ) ( 3 m - 2 ) } = \frac { 28 } { 55 }\)
\(\Rightarrow 16 m ^ { 2 } - 71 m + 28 = 0\)
\(m = 4\) BC
Reject \(m = \frac { 7 } { 16 }\) as \(m\) is an integer
M1
M1
A1
M1
A1
M1
A1
[7]
3.1b
3.1b
2.1
3.1a
2.1
1.1
3.2a
Use \({ } ^ { 2 m } C _ { 2 }\) and \(m\)
Divide by \({ } ^ { 3 m } C _ { 3 }\)
Correct expression in terms of \(m\) (allow with \(m\) not cancelled yet)
Equate to \(\frac { 28 } { 55 }\) \simplify to three-term quadratic
Correct simplified quadratic, or (quadratic) \(\times m , = 0\), aef Solve to get both 4 and \(\frac { 7 } { 16 }\)
Explicitly reject \(m = \frac { 7 } { 16 }\)
\(\frac { 2 m ( 2 m - 1 ) \times m \times 3 ! } { 3 m ( 3 m - 1 ) ( 3 m - 2 ) \times 2 }\) then as above
Multiplication method can get full marks, but if no 3 or 3 !, max
M1M0A0 M1A0M0A0
This paper (2 questions)
View full paper