Questions — OCR FP1 AS (39 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR FP1 AS 2017 December Q1
1 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { c c c } - 3 & 3 & 2
5 & - 4 & - 3
- 1 & 1 & 1 \end{array} \right)\).
  1. Find \(\mathbf { A } ^ { - 1 }\).
  2. Solve the simultaneous equations $$\begin{aligned} - 3 x + 3 y + 2 z & = 12 a
    5 x - 4 y - 3 z & = - 6
    - x + y + z & = 7 \end{aligned}$$ giving your solution in terms of \(a\).
OCR FP1 AS 2017 December Q2
2 The loci \(C _ { 1 }\) and \(C _ { 2 }\) are given by \(| z - ( 3 + 2 \mathrm { i } ) | = 2\) and \(\arg ( z - ( 3 + 2 \mathrm { i } ) ) = \frac { 5 \pi } { 6 }\) respectively.
  1. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on a single Argand diagram.
  2. Find, in surd form, the number represented by the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Indicate, by shading, the region of the Argand diagram for which $$| z - ( 3 + 2 i ) | \leqslant 2 \text { and } \frac { 5 \pi } { 6 } \leqslant \arg ( z - ( 3 + 2 i ) ) \leqslant \pi$$
OCR FP1 AS 2017 December Q3
3 Two lines, \(l _ { 1 }\) and \(l _ { 2 }\), have the following equations. $$\begin{aligned} & l _ { 1 } : \mathbf { r } = \left( \begin{array} { c } - 11
10
3 \end{array} \right) + \lambda \left( \begin{array} { c } 2
- 2
1 \end{array} \right)
& l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 5
2
OCR FP1 AS 2017 December Q5
5
2
4 \end{array} \right) + \mu \left( \begin{array} { c } 3
1
- 2 \end{array} \right) \end{aligned}$$ \(P\) is the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the position vector of \(P\).
  2. Find, correct to 1 decimal place, the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\).
    \(Q\) is a point on \(l _ { 1 }\) which is 12 metres away from \(P . R\) is the point on \(l _ { 2 }\) such that \(Q R\) is perpendicular to \(l _ { 1 }\).
  3. Determine the length \(Q R\). 4 In this question you must show detailed reasoning.
    The distinct numbers \(\omega _ { 1 }\) and \(\omega _ { 2 }\) both satisfy the quadratic equation \(4 x ^ { 2 } + 4 x + 17 = 0\).
  4. Write down the value of \(\omega _ { 1 } \omega _ { 2 }\).
  5. \(A , B\) and \(C\) are the points on an Argand diagram which represent \(\omega _ { 1 } , \omega _ { 2 }\) and \(\omega _ { 1 } \omega _ { 2 }\). Find the area of triangle \(A B C\). 5 In this question you must show detailed reasoning.
    The equation \(x ^ { 3 } + 3 x ^ { 2 } - 2 x + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  6. Using the identity \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \equiv ( \alpha + \beta + \gamma ) ^ { 3 } - 3 ( \alpha \beta + \beta \gamma + \gamma \alpha ) ( \alpha + \beta + \gamma ) + 3 \alpha \beta \gamma\) find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
  7. Given that \(\alpha ^ { 3 } \beta ^ { 3 } + \beta ^ { 3 } \gamma ^ { 3 } + \gamma ^ { 3 } \alpha ^ { 3 } = 112\) find a cubic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 }\) and \(\gamma ^ { 3 }\).
OCR FP1 AS 2017 December Q6
6 Prove by induction that \(n ! \geqslant 6 n\) for \(n \geqslant 4\).
OCR FP1 AS 2017 December Q7
7 A transformation is equivalent to a shear parallel to the \(x\)-axis followed by a shear parallel to the \(y\)-axis and is represented by the matrix \(\left( \begin{array} { c c } 1 & s
t & 0 \end{array} \right)\). Find in terms of \(s\) the matrices which represent each of the shears.
OCR FP1 AS 2017 December Q10
10
3 \end{array} \right) + \lambda \left( \begin{array} { c } 2
- 2
1 \end{array} \right)
& l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 5
2
4 \end{array} \right) + \mu \left( \begin{array} { c } 3
1
- 2 \end{array} \right) \end{aligned}$$ \(P\) is the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the position vector of \(P\).
  2. Find, correct to 1 decimal place, the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\).
    \(Q\) is a point on \(l _ { 1 }\) which is 12 metres away from \(P . R\) is the point on \(l _ { 2 }\) such that \(Q R\) is perpendicular to \(l _ { 1 }\).
  3. Determine the length \(Q R\). 4 In this question you must show detailed reasoning.
    The distinct numbers \(\omega _ { 1 }\) and \(\omega _ { 2 }\) both satisfy the quadratic equation \(4 x ^ { 2 } + 4 x + 17 = 0\).
  4. Write down the value of \(\omega _ { 1 } \omega _ { 2 }\).
  5. \(A , B\) and \(C\) are the points on an Argand diagram which represent \(\omega _ { 1 } , \omega _ { 2 }\) and \(\omega _ { 1 } \omega _ { 2 }\). Find the area of triangle \(A B C\). 5 In this question you must show detailed reasoning.
    The equation \(x ^ { 3 } + 3 x ^ { 2 } - 2 x + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  6. Using the identity \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \equiv ( \alpha + \beta + \gamma ) ^ { 3 } - 3 ( \alpha \beta + \beta \gamma + \gamma \alpha ) ( \alpha + \beta + \gamma ) + 3 \alpha \beta \gamma\) find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
  7. Given that \(\alpha ^ { 3 } \beta ^ { 3 } + \beta ^ { 3 } \gamma ^ { 3 } + \gamma ^ { 3 } \alpha ^ { 3 } = 112\) find a cubic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 }\) and \(\gamma ^ { 3 }\). 6 Prove by induction that \(n ! \geqslant 6 n\) for \(n \geqslant 4\). 7 A transformation is equivalent to a shear parallel to the \(x\)-axis followed by a shear parallel to the \(y\)-axis and is represented by the matrix \(\left( \begin{array} { c c } 1 & s
    t & 0 \end{array} \right)\). Find in terms of \(s\) the matrices which represent each of the shears. 8
  8. (a) Find, in terms of \(x\), a vector which is perpendicular to the vectors \(\left( \begin{array} { c } x - 2
    5
    1 \end{array} \right)\) and \(\left( \begin{array} { c } x
    6
    2 \end{array} \right)\).
    (b) Find the shortest possible vector of the form \(\left( \begin{array} { l } 1
    a
    b \end{array} \right)\) which is perpendicular to the vectors \(\left( \begin{array} { c } x - 2
    5
    1 \end{array} \right)\) and \(\left( \begin{array} { c } x
    6
    2 \end{array} \right)\).
  9. Vector \(\mathbf { v }\) is perpendicular to both \(\left( \begin{array} { c } - 1
    1
    1 \end{array} \right)\) and \(\left( \begin{array} { c } 1
    p
    p ^ { 2 } \end{array} \right)\) where \(p\) is a real number. Show that it is impossible for \(\mathbf { v }\) to be perpendicular to the vector \(\left( \begin{array} { c } 1
    1
    p - 1 \end{array} \right)\). \section*{OCR} Oxford Cambridge and RSA
OCR FP1 AS 2018 March Q1
1
  1. The complex number 3-4i is denoted by \(z _ { 1 }\). Write \(z _ { 1 }\) in modulus-argument form, giving your angle in radians to 3 significant figures.
  2. The complex number \(z _ { 2 }\) has modulus 6 and argument - 2.5 radians. Express \(z _ { 1 } z _ { 2 }\) in modulus-argument form with the angle in radians correct to 3 significant figures.
OCR FP1 AS 2018 March Q2
2 In this question you must show detailed reasoning.
The quadratic equation \(3 x ^ { 2 } - 7 x + 5 = 0\) has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Hence find the values of the following expressions.
    (a) \(\frac { 1 } { \alpha } + \frac { 1 } { \beta }\)
    (b) \(\alpha ^ { 2 } + \beta ^ { 2 }\)
    \(3 \quad l _ { 1 }\) and \(l _ { 2 }\) are two intersecting straight lines with the following equations. $$\begin{aligned} & l _ { 1 } : \mathbf { r } = \left( \begin{array} { c }
OCR FP1 AS 2018 March Q3
3
3
- 5 \end{array} \right) + \lambda \left( \begin{array} { c } 1
3
- 2 \end{array} \right)
& l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 1
a
1 \end{array} \right) + \mu \left( \begin{array} { c } 2
2
- 3 \end{array} \right) \end{aligned}$$
  1. Find the position vector of the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
  2. Determine the value of \(a\).
OCR FP1 AS 2018 March Q4
4 Find, in exact form, the area of the region on an Argand diagram which represents the locus of points for which \(| z - 5 - 2 \mathrm { i } | \leqslant \sqrt { 32 }\) and \(\operatorname { Re } ( z ) \geqslant 9\).
OCR FP1 AS 2018 March Q5
5 The matrix \(\mathbf { A }\) is given by \(\left( \begin{array} { c c c } 1 & 0 & 0
0 & a ^ { 2 } & 0
0 & 0 & 1 \end{array} \right)\) and the matrix \(\mathbf { B }\) is given by \(\left( \begin{array} { c c c } 0.6 & b & 0
- b & 0.6 & 0
0 & 0 & 1 \end{array} \right)\).
  1. \(\mathbf { A }\) represents a reflection. Write down the value of \(\operatorname { det } \mathbf { A }\).
  2. Hence find the possible values of \(a\).
  3. \(\mathbf { r }\) is the position vector of a point \(R\). Given that \(\mathbf { A r } = \mathbf { r }\) describe the location of \(R\).
  4. \(\mathbf { B }\) represents a rotation. Write down the value of \(\operatorname { det } \mathbf { B }\).
  5. Hence find the possible values of \(b\).
OCR FP1 AS 2018 March Q6
6 The matrix \(\mathbf { A }\) is given by \(\left( \begin{array} { l l } 1 & 2
1 & a \end{array} \right)\) and the matrix \(\mathbf { B }\) is given by \(\left( \begin{array} { c c } 2 & 1
- 1 & b \end{array} \right)\).
  1. Find the matrix \(\mathbf { A B }\).
  2. State the conditions on \(a\) and \(b\) for \(\mathbf { A B }\) to be a singular matrix.
    \(P Q R S\) is a quadrilateral and the vertices \(P , Q , R\) and \(S\) are in clockwise order. A transformation, T , is represented by the matrix \(\mathbf { A B }\).
  3. State the effect on both the area and also the orientation of the image of \(P Q R S\) under T in each of the following cases.
    (a) \(\quad a = 1\) and \(b = 1\)
    (b) \(\quad a = 2\) and \(b = 3\)
OCR FP1 AS 2018 March Q7
7 In this question you must show detailed reasoning.
  1. Find the square roots of the number \(528 + 46 \mathrm { i }\) giving your answers in the form \(a + b \mathrm { i }\).
  2. \(\quad 3 + 2 \mathrm { i }\) is a root of the equation \(x ^ { 3 } - a x + 78 = 0\), where \(a\) is a real number. Find the value of \(a\).
OCR FP1 AS 2018 March Q8
8 In this question you must show detailed reasoning. A sequence of vectors \(\mathbf { a } _ { 1 } , \mathbf { a } _ { 2 } , \mathbf { a } _ { 3 } , \ldots\) is defined by
  • \(\mathbf { a } _ { 1 } = \left( \begin{array} { l } 1
    1
    1 \end{array} \right)\)
  • \(\quad \mathbf { a } _ { n + 1 } = \left( \mathbf { a } _ { n } \times \mathbf { b } \right) \times \mathbf { b }\), for integers \(n \geqslant 1\), where \(\mathbf { b }\) is the vector \(\frac { 1 } { 4 } \left( \begin{array} { c } - 3
    1
    2 \end{array} \right)\).
    1. Prove by induction that \(\mathbf { a } _ { n } = \left( - \frac { 7 } { 8 } \right) ^ { n - 1 } \left( \begin{array} { l } 1
      1
      1 \end{array} \right)\). for all integers \(n \geqslant 1\).
    2. Use an algebraic method to find the smallest value of \(n\) such that \(\left| \mathbf { a } _ { n } \right| < 0.001\).
\section*{END OF QUESTION PAPER}
OCR FP1 AS 2021 June Q2
2
The position vector of point \(A\) is \(\mathbf { a } = - 9 \mathbf { i } + 2 \mathbf { j } + 6 \mathbf { k }\).
The line \(l\) passes through \(A\) and is perpendicular to \(\mathbf { a }\).
  1. Determine the shortest distance between the origin, \(O\), and \(l\).
    \(l\) is also perpendicular to the vector \(\mathbf { b }\) where \(\mathbf { b } = - 2 \mathbf { i } + \mathbf { j } + \mathbf { k }\).
  2. Find a vector which is perpendicular to both \(\mathbf { a }\) and \(\mathbf { b }\).
  3. Write down an equation of \(l\) in vector form.
    \(P\) is a point on \(l\) such that \(P A = 2 O A\).
  4. Find angle \(P O A\) giving your answer to 3 significant figures.
    \(C\) is a point whose position vector, \(\mathbf { c }\), is given by \(\mathbf { c } = p \mathbf { a }\) for some constant \(p\). The line \(m\) passes through \(C\) and has equation \(\mathbf { r } = \mathbf { c } + \mu \mathbf { b }\). The point with position vector \(9 \mathbf { i } + 8 \mathbf { j } - 12 \mathbf { k }\) lies on \(m\).
  5. Find the value of \(p\). \section*{In this question you must show detailed reasoning.} You are given that \(\alpha , \beta\) and \(\gamma\) are the roots of the equation \(5 x ^ { 3 } - 2 x ^ { 2 } + 3 x + 1 = 0\).
  6. Find the value of \(\alpha ^ { 2 } \beta ^ { 2 } + \beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 }\).
  7. Find a cubic equation whose roots are \(\alpha ^ { 2 } , \beta ^ { 2 }\) and \(\gamma ^ { 2 }\) giving your answer in the form \(a x ^ { 3 } + b x ^ { 2 } + c x + d = 0\) where \(a , b , c\) and \(d\) are integers.
OCR FP1 AS 2021 June Q4
24 marks
4 In this question you must show detailed reasoning.
\(\mathbf { M }\) is the matrix \(\left( \begin{array} { l l } 1 & 6
0 & 2 \end{array} \right)\).
Prove that \(\mathbf { M } ^ { n } = \left( \begin{array} { c c } 1 & 3 \left( 2 ^ { n + 1 } - 2 \right)
0 & 2 ^ { n } \end{array} \right)\), for any positive integer \(n\). \section*{Total Marks for Question Set 1: 30} \section*{Mark scheme} \section*{Marking Instructions} a An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed.
b The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
c When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
d The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'.
e We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
  • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
  • When a value is not given in the paper accept any answer that agrees with the correct value to \(\mathbf { 3 ~ s } . \mathbf { f }\). unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
Candidates using a value of \(9.80,9.81\) or 10 for \(g\) should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
f Rules for replaced work and multiple attempts:
  • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
  • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
  • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.
If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
h If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Abbreviations}
Abbreviations used in the mark schemeMeaning
dep*Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
caoCorrect answer only
оеOr equivalent
rotRounded or truncated
soiSeen or implied
wwwWithout wrong working
AGAnswer given
awrtAnything which rounds to
BCBy Calculator
DRThis question included the instruction: In this question you must show detailed reasoning.
\end{table} \section*{Appendix: Special cases for question 3 using the substitution method} \section*{Working is shown in part (a). If working shown in part (b) mark as mark scheme above. If little or no working then mark part (b) as:}
  1. Working in (a) is fully correct. Then award:
4/4 If correct cubic equation is re-written and there is a reference to the working in part (a) such as "See working above" or arrows etc.
3/4 If correct cubic equation re-written and there is no reference to the working in part (a)
0/4 If an incorrect cubic is written down, or " \(= 0\) " missing
2. Working in (a) is not fully correct. Then award: 0/4 if B1 M1 M1 is not awarded in part (a) (i.e. at least three marks given for (a))
3/4 if at least three marks awarded in part (a) and reference is made to the working in part (a) and the same cubic as in part (a) is re-written in part
(b) with and " \(= 0\) " 2/4 if at least three marks awarded in part (a) and the same cubic as in part (a) is re-written in part (b) with and " \(= 0\) " but no reference is made to the working in part (a) \section*{Working is shown in part (b) and no working shown in part (a).}
  1. Working in part (b) is fully correct. Then award:
    \(5 / 5\) if a reference to the working in part (b) is made, the correct cubic equation is written down, there is a comment stating that the roots of the new cubic are \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) and the correct answer is given.
    \(4 / 5\) as above but no comment about the roots of the new cubic equation being \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) or there is no reference to the working in part (b) (i.e. one element of explanation is missing).
    \(3 / 5\) if the correct cubic equation is written down and correct answer of \(\frac { 13 } { 25 }\)
    \(3 / 5\) if a reference is made to working in part (b) but the cubic equation is not re-written and no comment about the roots being \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) (and correct answer of \(\frac { 13 } { 25 }\) is given)
  2. Working in part (b) is not fully correct.
    \(3 / 5\) if a reference to the working in part (b) is made, the same cubic equation from part (b) is written down, there is a comment stating that the roots of the new cubic are \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) and the correct follow through coefficient ratio is given.
    \(2 / 5\) as above but no comment about the roots of the new cubic equation being \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\) or there is no reference to the working in part (b) (i.e. one element of explanation is missing).
    \(1 / 5\) if same cubic equation as in part (b) is written down and the correct follow through coefficient ratio is given.
  3. If \(\frac { 13 } { 25 }\) appears as an answer in part (a) with no supporting working or comments then \(0 / 5\)
OCR FP1 AS 2021 June Q1
1 Matrices \(\mathbf { P }\) and \(\mathbf { Q }\) are given by \(\mathbf { P } = \left( \begin{array} { c c c } 1 & k & 0
- 2 & 1 & 3 \end{array} \right)\) and \(\mathbf { Q } = ( ( 1 + k ) - 1 )\) where \(k\) is a constant.
Exactly one of statements A and B is true.
Statement A: \(\quad \mathbf { P }\) and \(\mathbf { Q }\) (in that order) are conformable for multiplication.
Statement B: \(\quad \mathbf { Q }\) and \(\mathbf { P }\) (in that order) are conformable for multiplication.
  1. State, with a reason, which one of A and B is true.
  2. Find either \(\mathbf { P Q }\) or \(\mathbf { Q P }\) in terms of \(k\).
OCR FP1 AS 2021 June Q2
2 In this question you must show detailed reasoning. You are given that \(\mathrm { f } ( z ) = 4 z ^ { 4 } - 12 z ^ { 3 } + 41 z ^ { 2 } - 128 z + 185\) and that \(2 + \mathrm { i }\) is a root of the equation \(\mathrm { f } ( z ) = 0\).
  1. Express \(\mathrm { f } ( z )\) as the product of two quadratic factors with integer coefficients.
  2. Solve \(\mathrm { f } ( z ) = 0\). Two loci on an Argand diagram are defined by \(C _ { 1 } = \left\{ z : | z | = r _ { 1 } \right\}\) and \(C _ { 2 } = \left\{ z : | z | = r _ { 2 } \right\}\) where \(r _ { 1 } > r _ { 2 }\). You are given that two of the points representing the roots of \(\mathrm { f } ( z ) = 0\) are on \(C _ { 1 }\) and two are on \(C _ { 2 } \cdot R\) is the region on the Argand diagram between \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Find the exact area of \(R\).
  4. \(\omega\) is the sum of all the roots of \(\mathrm { f } ( z ) = 0\). Determine whether or not the point on the Argand diagram which represents \(\omega\) lies in \(R\).
OCR FP1 AS 2021 June Q3
3 A transformation T is represented by the matrix \(\mathbf { T }\) where \(\mathbf { T } = \left( \begin{array} { c c } x ^ { 2 } + 1 & - 4
3 - 2 x ^ { 2 } & x ^ { 2 } + 5 \end{array} \right)\). A quadrilateral \(Q\), whose area is 12 units, is transformed by T to \(Q ^ { \prime }\). Find the smallest possible value of the area of \(Q ^ { \prime }\).
OCR FP1 AS 2021 June Q4
30 marks
4 A transformation A is represented by the matrix \(\mathbf { A }\) where \(\mathbf { A } = \left( \begin{array} { c c c } - 1 & x & 2
7 - x & - 6 & 1
5 & - 5 x & 2 x \end{array} \right)\).
The tetrahedron \(H\) has vertices at \(O , P , Q\) and \(R\). The volume of \(H\) is 6 units. \(P ^ { \prime } , Q ^ { \prime } , R ^ { \prime }\) and \(H ^ { \prime }\) are the images of \(P , Q , R\) and \(H\) under A .
  1. In the case where \(x = 5\)
    • find the volume of \(H ^ { \prime }\),
    • determine whether A preserves the orientation of \(H\).
    • Find the values of \(x\) for which \(O , P ^ { \prime } , Q ^ { \prime }\) and \(R ^ { \prime }\) are coplanar (i.e. the four points lie in the same plane).
    \section*{Total Marks for Question Set 2: 30} \section*{Mark scheme} \section*{Marking Instructions} a An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed.
    b The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
    A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
    c When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
    d The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'.
    e We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
    • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
    • When a value is not given in the paper accept any answer that agrees with the correct value to \(\mathbf { 3 ~ s } . \mathbf { f }\). unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
    Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
    Candidates using a value of \(9.80,9.81\) or 10 for \(g\) should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
    f Rules for replaced work and multiple attempts:
    • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
    • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
    • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
    For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.
    If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
    h If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Abbreviations}
    Abbreviations used in the mark schemeMeaning
    dep*Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
    caoCorrect answer only
    оеOr equivalent
    rotRounded or truncated
    soiSeen or implied
    wwwWithout wrong working
    AGAnswer given
    awrtAnything which rounds to
    BCBy Calculator
    DRThis question included the instruction: In this question you must show detailed reasoning.
    \end{table}
OCR FP1 AS 2021 June Q1
1
  1. Find a vector which is perpendicular to both \(\left( \begin{array} { r } 1
    3
    - 2 \end{array} \right)\) and \(\left( \begin{array} { r } - 3
    - 6
    4 \end{array} \right)\).
  2. The cartesian equation of a line is \(\frac { x } { 2 } = y - 3 = 2 z + 4\). Express the equation of this line in vector form.
OCR FP1 AS 2021 June Q2
2 In this question you must show detailed reasoning.
The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by \(z _ { 1 } = 2 - 3 \mathrm { i }\) and \(z _ { 2 } = a + 4 \mathrm { i }\) where \(a\) is a real number.
  1. Express \(z _ { 1 }\) in modulus-argument form, giving the modulus in exact form and the argument correct to 3 significant figures.
  2. Find \(z _ { 1 } z _ { 2 }\) in terms of \(a\), writing your answer in the form \(c + \mathrm { i } d\).
  3. The real and imaginary parts of a complex number on an Argand diagram are \(x\) and \(y\) respectively. Given that the point representing \(z _ { 1 } z _ { 2 }\) lies on the line \(y = x\), find the value of \(a\).
  4. Given instead that \(z _ { 1 } z _ { 2 } = \left( z _ { 1 } z _ { 2 } \right) ^ { * }\) find the value of \(a\). In this question you must show detailed reasoning.
  5. Express \(( 2 + 3 \mathrm { i } ) ^ { 3 }\) in the form \(a + \mathrm { i } b\).
  6. Hence verify that \(2 + 3 \mathrm { i }\) is a root of the equation \(3 z ^ { 3 } - 8 z ^ { 2 } + 23 z + 52 = 0\).
  7. Express \(3 z ^ { 3 } - 8 z ^ { 2 } + 23 z + 52\) as the product of a linear factor and a quadratic factor with real coefficients.
OCR FP1 AS 2021 June Q4
27 marks
4
Prove by induction that \(2 ^ { n + 1 } + 5 \times 9 ^ { n }\) is divisible by 7 for all integers \(n \geqslant 1\). \section*{Total Marks for Question Set 3: 30} \section*{Mark scheme} \section*{Marking Instructions} a An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed.
b The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
c When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
d The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'.
e We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
  • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
  • When a value is not given in the paper accept any answer that agrees with the correct value to \(\mathbf { 3 ~ s } . \mathbf { f }\). unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
Candidates using a value of \(9.80,9.81\) or 10 for \(g\) should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
f Rules for replaced work and multiple attempts:
  • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
  • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
  • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.
If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
h If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Abbreviations}
Abbreviations used in the mark schemeMeaning
dep*Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
caoCorrect answer only
оеOr equivalent
rotRounded or truncated
soiSeen or implied
wwwWithout wrong working
AGAnswer given
awrtAnything which rounds to
BCBy Calculator
DRThis question included the instruction: In this question you must show detailed reasoning.
\end{table}
OCR FP1 AS 2021 June Q1
1 In this question you must show detailed reasoning.
The cubic equation \(2 x ^ { 3 } + 3 x ^ { 2 } - 5 x + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\). By making an appropriate substitution, or otherwise, find a cubic equation with integer coefficients whose roots are \(\frac { 1 } { \alpha } , \frac { 1 } { \beta }\) and \(\frac { 1 } { \gamma }\).