OCR FP1 AS 2017 December — Question 5

Exam BoardOCR
ModuleFP1 AS (Further Pure 1 AS)
Year2017
SessionDecember
TopicRoots of polynomials

5
2
4 \end{array} \right) + \mu \left( \begin{array} { c } 3
1
- 2 \end{array} \right) \end{aligned}$$ \(P\) is the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the position vector of \(P\).
  2. Find, correct to 1 decimal place, the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\).
    \(Q\) is a point on \(l _ { 1 }\) which is 12 metres away from \(P . R\) is the point on \(l _ { 2 }\) such that \(Q R\) is perpendicular to \(l _ { 1 }\).
  3. Determine the length \(Q R\). 4 In this question you must show detailed reasoning.
    The distinct numbers \(\omega _ { 1 }\) and \(\omega _ { 2 }\) both satisfy the quadratic equation \(4 x ^ { 2 } + 4 x + 17 = 0\).
  4. Write down the value of \(\omega _ { 1 } \omega _ { 2 }\).
  5. \(A , B\) and \(C\) are the points on an Argand diagram which represent \(\omega _ { 1 } , \omega _ { 2 }\) and \(\omega _ { 1 } \omega _ { 2 }\). Find the area of triangle \(A B C\). 5 In this question you must show detailed reasoning.
    The equation \(x ^ { 3 } + 3 x ^ { 2 } - 2 x + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  6. Using the identity \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \equiv ( \alpha + \beta + \gamma ) ^ { 3 } - 3 ( \alpha \beta + \beta \gamma + \gamma \alpha ) ( \alpha + \beta + \gamma ) + 3 \alpha \beta \gamma\) find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
  7. Given that \(\alpha ^ { 3 } \beta ^ { 3 } + \beta ^ { 3 } \gamma ^ { 3 } + \gamma ^ { 3 } \alpha ^ { 3 } = 112\) find a cubic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 }\) and \(\gamma ^ { 3 }\).