5 The matrix \(\mathbf { A }\) is given by \(\left( \begin{array} { c c c } 1 & 0 & 0
0 & a ^ { 2 } & 0
0 & 0 & 1 \end{array} \right)\) and the matrix \(\mathbf { B }\) is given by \(\left( \begin{array} { c c c } 0.6 & b & 0
- b & 0.6 & 0
0 & 0 & 1 \end{array} \right)\).
- \(\mathbf { A }\) represents a reflection. Write down the value of \(\operatorname { det } \mathbf { A }\).
- Hence find the possible values of \(a\).
- \(\mathbf { r }\) is the position vector of a point \(R\). Given that \(\mathbf { A r } = \mathbf { r }\) describe the location of \(R\).
- \(\mathbf { B }\) represents a rotation. Write down the value of \(\operatorname { det } \mathbf { B }\).
- Hence find the possible values of \(b\).