OCR FP1 AS 2018 March — Question 8

Exam BoardOCR
ModuleFP1 AS (Further Pure 1 AS)
Year2018
SessionMarch
TopicVectors: Cross Product & Distances

8 In this question you must show detailed reasoning. A sequence of vectors \(\mathbf { a } _ { 1 } , \mathbf { a } _ { 2 } , \mathbf { a } _ { 3 } , \ldots\) is defined by
  • \(\mathbf { a } _ { 1 } = \left( \begin{array} { l } 1
    1
    1 \end{array} \right)\)
  • \(\quad \mathbf { a } _ { n + 1 } = \left( \mathbf { a } _ { n } \times \mathbf { b } \right) \times \mathbf { b }\), for integers \(n \geqslant 1\), where \(\mathbf { b }\) is the vector \(\frac { 1 } { 4 } \left( \begin{array} { c } - 3
    1
    2 \end{array} \right)\).
    1. Prove by induction that \(\mathbf { a } _ { n } = \left( - \frac { 7 } { 8 } \right) ^ { n - 1 } \left( \begin{array} { l } 1
      1
      1 \end{array} \right)\). for all integers \(n \geqslant 1\).
    2. Use an algebraic method to find the smallest value of \(n\) such that \(\left| \mathbf { a } _ { n } \right| < 0.001\).
\section*{END OF QUESTION PAPER}