Questions — Edexcel (9685 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C34 2017 October Q12
14 marks Standard +0.8
  1. Relative to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
$$l _ { 1 } : \mathbf { r } = \left( \begin{array} { l } 2 \\ 0 \\ 7 \end{array} \right) + \lambda \left( \begin{array} { r } 2 \\ - 2 \\ 1 \end{array} \right) \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 2 \\ 0 \\ 7 \end{array} \right) + \mu \left( \begin{array} { l } 8 \\ 4 \\ 1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(A\).
  1. Write down the coordinates of \(A\). Given that the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\),
  2. show that \(\sin \theta = k \sqrt { 2 }\), where \(k\) is a rational number to be found. The point \(B\) lies on \(l _ { 1 }\) where \(\lambda = 4\) The point \(C\) lies on \(l _ { 2 }\) such that \(A C = 2 A B\).
  3. Find the exact area of triangle \(A B C\).
  4. Find the coordinates of the two possible positions of \(C\).
Edexcel C34 2018 October Q1
8 marks Standard +0.3
  1. (a) Write \(\cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\) in radians to 3 decimal places.
    (b) Hence solve, for \(0 \leqslant \theta < \pi\), the equation
$$\cos 2 \theta + 4 \sin 2 \theta = 1.2$$ giving your answers to 2 decimal places.
Edexcel C34 2018 October Q2
7 marks Standard +0.3
2. A curve \(C\) has equation $$x ^ { 3 } - 4 x y + 2 x + 3 y ^ { 2 } - 3 = 0$$ Find an equation of the normal to \(C\) at the point ( \(- 3,2\) ), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers. \includegraphics[max width=\textwidth, alt={}, center]{c6bde466-61ec-437d-a3b4-84511a98d788-05_108_166_2612_1781}
Edexcel C34 2018 October Q3
6 marks Moderate -0.8
3. Given \(\cos \theta ^ { \circ } = p\), where \(p\) is a constant and \(\theta ^ { \circ }\) is acute use standard trigonometric identities to find, in terms of \(p\),
  1. \(\sec \theta ^ { \circ }\)
  2. \(\sin ( \theta - 90 ) ^ { \circ }\)
  3. \(\sin 2 \theta ^ { \circ }\) Write each answer in its simplest form.
Edexcel C34 2018 October Q4
10 marks Standard +0.3
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c6bde466-61ec-437d-a3b4-84511a98d788-08_510_783_260_584} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = 8 x - x \mathrm { e } ^ { 3 x } , x \geqslant 0\) The curve meets the \(x\)-axis at the origin and cuts the \(x\)-axis at the point \(A\).
  1. Find the exact \(x\) coordinate of \(A\), giving your answer in its simplest form. The curve has a maximum turning point at the point \(M\).
  2. Show, by using calculus, that the \(x\) coordinate of \(M\) is a solution of $$x = \frac { 1 } { 3 } \ln \left( \frac { 8 } { 1 + 3 x } \right)$$
  3. Use the iterative formula $$x _ { n + 1 } = \frac { 1 } { 3 } \ln \left( \frac { 8 } { 1 + 3 x _ { n } } \right)$$ with \(x _ { 0 } = 0.4\) to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places.
Edexcel C34 2018 October Q5
10 marks Standard +0.3
5. $$f ( x ) = \frac { 4 x ^ { 2 } + 5 x + 3 } { ( x + 2 ) ( 1 - x ) ^ { 2 } } \equiv \frac { A } { ( x + 2 ) } + \frac { B } { ( 1 - x ) } + \frac { C } { ( 1 - x ) ^ { 2 } }$$
  1. Find the values of the constants \(A\), \(B\) and \(C\).
    1. Hence find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
    2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x\), writing your answer in the form \(p + \ln q\), where \(p\) and \(q\) are constants.
      "
      VGHV SIHIN NI III M I ION OCVIIV SIHI NI JIIIM ION OCVI4V SIHIL NI JIIYM ION OC
Edexcel C34 2018 October Q6
9 marks Standard +0.3
6. (a) Use binomial expansions to show that, for \(| x | < \frac { 1 } { 2 }\) (b) Find the exact value of \(\sqrt { \frac { 1 + 2 x } { 1 - x } }\) when \(x = \frac { 1 } { 10 }\) Give your answer in the form \(k \sqrt { 3 }\), where \(k\) is a constant to be determined.
(c) Substitute \(x = \frac { 1 } { 10 }\) into the expansion given in part (a) and hence find an approximate value for \(\sqrt { 3 }\) Give your answer in the form \(\frac { a } { b }\) where \(a\) and \(b\) are integers. $$\sqrt { \frac { 1 + 2 x } { 1 - x } } \approx 1 + \frac { 3 } { 2 } x + \frac { 3 } { 8 } x ^ { 2 }$$
Edexcel C34 2018 October Q7
8 marks Standard +0.3
7. A curve has equation $$y = \ln ( 1 - \cos 2 x ) , \quad x \in \mathbb { R } , 0 < x < \pi$$ Show that
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x } = k \cot x\), where \(k\) is a constant to be found. Hence find the exact coordinates of the point on the curve where
  2. \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \sqrt { 3 }\)
Edexcel C34 2018 October Q8
10 marks Standard +0.3
8. (i) Find \(\int x \sin x d x\) (ii) (a) Use the substitution \(x = \sec \theta\) to show that
(b) Hence find the exact value of $$\int _ { 1 } ^ { 2 } \sqrt { 1 - \frac { 1 } { x ^ { 2 } } } \mathrm {~d} x = \int _ { 0 } ^ { \frac { \pi } { 3 } } \tan ^ { 2 } \theta \mathrm {~d} \theta$$ Hence find the exact value of $$\int _ { 1 } ^ { 2 } \sqrt { 1 - \frac { 1 } { x ^ { 2 } } } \mathrm {~d} x$$
Edexcel C34 2018 October Q9
9 marks Standard +0.3
9. A rare species of mammal is being studied. The population \(P\), \(t\) years after the study started, is modelled by the formula $$P = \frac { 900 \mathrm { e } ^ { \frac { 1 } { 4 } t } } { 3 \mathrm { e } ^ { \frac { 1 } { 4 } t } - 1 } , \quad t \in \mathbb { R } , \quad t \geqslant 0$$ Using the model,
  1. calculate the number of mammals at the start of the study,
  2. calculate the exact value of \(t\) when \(P = 315\) Give your answer in the form \(a \ln k\), where \(a\) and \(k\) are integers to be determined.
    1. Find \(\frac { \mathrm { d } P } { \mathrm {~d} t }\)
    2. Hence find the value of \(\frac { \mathrm { d } P } { \mathrm {~d} t }\) when \(t = 8\), giving your answer to 2 decimal places.
Edexcel C34 2018 October Q10
12 marks Standard +0.3
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c6bde466-61ec-437d-a3b4-84511a98d788-32_492_636_260_660} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the graph with equation \(y = \mathrm { g } ( x )\), where $$\mathrm { g } ( x ) = \frac { 3 x - 4 } { x - 3 } , \quad x \in \mathbb { R } , \quad x < 3$$ The graph cuts the \(x\)-axis at the point \(A\) and the \(y\)-axis at the point \(B\), as shown in Figure 2 .
  1. State the range of g .
  2. State the coordinates of
    1. point \(A\)
    2. point \(B\)
  3. Find \(\operatorname { gg } ( x )\) in its simplest form.
  4. Sketch the graph with equation \(y = | \mathrm { g } ( x ) |\) On your sketch, show the coordinates of each point at which the graph meets or cuts the axes and state the equation of each asymptote.
  5. Find the exact solution of the equation \(| \mathrm { g } ( x ) | = 8\)
Edexcel C34 2018 October Q11
10 marks Standard +0.3
11. Relative to a fixed origin \(O\), the line \(l _ { 1 }\) is given by the equation $$l _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { r } 2 \\ 3 \\ - 1 \end{array} \right) + \lambda \left( \begin{array} { r } - 1 \\ 4 \\ 3 \end{array} \right)$$ where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) passes through the origin and is parallel to \(l _ { 1 }\)
  1. Find a vector equation for \(l _ { 2 }\) The point \(A\) and the point \(B\) both lie on \(l _ { 1 }\) with parameters \(\lambda = 0\) and \(\lambda = 3\) respectively.
    Write down
    1. the coordinates of \(A\),
    2. the coordinates of \(B\).
  2. Find the size of the acute angle between \(O A\) and \(l _ { 1 }\) Give your answer in degrees to one decimal place. The point \(D\) lies on \(l _ { 2 }\) such that \(O A B D\) is a parallelogram.
  3. Find the area of \(O A B D\), giving your answer to the nearest whole number.
Edexcel C34 2018 October Q12
13 marks Standard +0.3
12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c6bde466-61ec-437d-a3b4-84511a98d788-40_520_663_255_644} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve \(C\) with parametric equations $$x = 7 t ^ { 2 } - 5 , \quad y = t \left( 9 - t ^ { 2 } \right) , \quad t \in \mathbb { R }$$
  1. Find an equation of the tangent to \(C\) at the point where \(t = 1\) Write your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers. The curve \(C\) cuts the \(x\)-axis at the points \(A\) and \(B\), as shown in Figure 3
    1. Find the \(x\) coordinate of the point \(A\).
    2. Find the \(x\) coordinate of the point \(B\). The region \(R\), shown shaded in Figure 3, is enclosed by the loop of the curve \(C\).
  2. Use integration to find the area of \(R\).
Edexcel C34 2018 October Q13
13 marks Standard +0.3
13. The volume of a spherical balloon of radius \(r \mathrm {~m}\) is \(V \mathrm {~m} ^ { 3 }\), where \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\)
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\) Given that the volume of the balloon increases with time \(t\) seconds according to the formula $$\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 20 } { V ( 0.05 t + 1 ) ^ { 3 } } , \quad t \geqslant 0$$
  2. find an expression in terms of \(r\) and \(t\) for \(\frac { \mathrm { d } r } { \mathrm {~d} t }\) Given that \(V = 1\) when \(t = 0\)
  3. solve the differential equation $$\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 20 } { V ( 0.05 t + 1 ) ^ { 3 } }$$ giving your answer in the form \(V ^ { 2 } = \mathrm { f } ( t )\).
  4. Hence find the radius of the balloon at time \(t = 20\), giving your answer to 3 significant figures.
    \includegraphics[max width=\textwidth, alt={}]{c6bde466-61ec-437d-a3b4-84511a98d788-48_2632_1828_121_121}
Edexcel C34 Specimen Q1
8 marks Standard +0.3
  1. (a) Express \(5 \cos 2 \theta - 12 \sin 2 \theta\) in the form \(R \cos ( 2 \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\) Give the value of \(\alpha\) to 2 decimal places.
    (b) Hence solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), the equation
$$5 \cos 2 \theta - 12 \sin 2 \theta = 10$$ giving your answers to 1 decimal place.
Edexcel C34 Specimen Q2
11 marks Moderate -0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-04_479_855_310_566} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve and the \(x\)-axis.
  1. Complete the table below with the values of \(y\) corresponding to \(x = \frac { \pi } { 4 }\) and \(x = \frac { \pi } { 2 }\), giving your answers to 5 decimal places.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)08.872070
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of the region \(R\). Give your answer to 4 decimal places. The curve \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\), has a maximum turning point at \(Q\), shown in Figure 1.
  3. Find the \(x\) coordinate of \(Q\).
Edexcel C34 Specimen Q3
6 marks Standard +0.3
  1. Using the substitution \(u = \cos x + 1\), or otherwise, show that
$$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { ( \cos x + 1 ) } \sin x \mathrm {~d} x = \mathrm { e } ( \mathrm { e } - 1 )$$
Edexcel C34 Specimen Q4
13 marks Standard +0.3
4. (a) Use the binomial theorem to expand $$( 2 - 3 x ) ^ { - 2 } , \quad | x | < \frac { 2 } { 3 }$$ in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient as a simplified fraction. $$\mathrm { f } ( x ) = \frac { a + b x } { ( 2 - 3 x ) ^ { 2 } } , \quad | x | < \frac { 2 } { 3 } , \quad \text { where } a \text { and } b \text { are constants. }$$ In the binomial expansion of \(\mathrm { f } ( x )\), in ascending powers of \(x\), the coefficient of \(x\) is 0 and the coefficient of \(x ^ { 2 }\) is \(\frac { 9 } { 16 }\) Find
(b) the value of \(a\) and the value of \(b\),
(c) the coefficient of \(x ^ { 3 }\), giving your answer as a simplified fraction.
Edexcel C34 Specimen Q5
14 marks Moderate -0.3
  1. The functions \(f\) and \(g\) are defined by
$$\begin{array} { l l } \mathrm { f } : x \mapsto \mathrm { e } ^ { - x } + 2 , & x \in \mathbb { R } \\ \mathrm {~g} : x \mapsto 2 \ln x , & x > 0 \end{array}$$
  1. Find \(\mathrm { fg } ( x )\), giving your answer in its simplest form.
  2. Find the exact value of \(x\) for which \(\mathrm { f } ( 2 x + 3 ) = 6\)
  3. Find \(\mathrm { f } ^ { - 1 }\), stating its domain.
  4. On the same axes, sketch the curves with equation \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\), giving the coordinates of all the points where the curves cross the axes.
Edexcel C34 Specimen Q6
12 marks Standard +0.8
6. The curve \(C\) has equation $$16 y ^ { 3 } + 9 x ^ { 2 } y - 54 x = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Edexcel C34 Specimen Q7
10 marks Challenging +1.2
  1. (a) Show that
$$\cot x - \cot 2 x \equiv \operatorname { cosec } 2 x , \quad x \neq \frac { n \pi } { 2 } , \quad n \in \mathbb { Z }$$ (b) Hence, or otherwise, solve for \(0 \leqslant \theta \leqslant \pi\) $$\operatorname { cosec } \left( 3 \theta + \frac { \pi } { 3 } \right) + \cot \left( 3 \theta + \frac { \pi } { 3 } \right) = \frac { 1 } { \sqrt { 3 } }$$ You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel C34 Specimen Q8
12 marks Standard +0.3
8. $$\mathrm { h } ( x ) = \frac { 2 } { x + 2 } + \frac { 4 } { x ^ { 2 } + 5 } - \frac { 18 } { \left( x ^ { 2 } + 5 \right) ( x + 2 ) } , \quad x \geqslant 0$$
  1. Show that \(\mathrm { h } ( x ) = \frac { 2 x } { x ^ { 2 } + 5 }\)
  2. Hence, or otherwise, find \(\mathrm { h } ^ { \prime } ( x )\) in its simplest form. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-26_679_1168_733_390} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a graph of the curve with equation \(y = \mathrm { h } ( x )\).
  3. Calculate the range of \(\mathrm { h } ( x )\).
Edexcel C34 Specimen Q9
12 marks Standard +0.3
  1. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2 \\ 3 \\ - 4 \end{array} \right) + \lambda \left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right)\), where \(\lambda\) is a scalar parameter.
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 0 \\ 9 \\ - 3 \end{array} \right) + \mu \left( \begin{array} { l } 5 \\ 0 \\ 2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(C\), find
  1. the coordinates of \(C\). The point \(A\) is the point on \(l _ { 1 }\) where \(\lambda = 0\) and the point \(B\) is the point on \(l _ { 2 }\) where \(\mu = - 1\)
  2. Find the size of the angle \(A C B\). Give your answer in degrees to 2 decimal places.
  3. Hence, or otherwise, find the area of the triangle \(A B C\).
Edexcel C34 Specimen Q10
15 marks Standard +0.8
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-34_599_923_322_571} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows part of the curve \(C\) with parametric equations $$x = \tan \theta , \quad y = \sin \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) and has coordinates \(\left( \sqrt { 3 } , \frac { 1 } { 2 } \sqrt { 3 } \right)\)
  1. Find the value of \(\theta\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\). The normal cuts the \(x\)-axis at the point \(Q\).
  2. Show that \(Q\) has coordinates \(( k \sqrt { 3 } , 0 )\), giving the value of the constant \(k\). The finite shaded region \(S\) shown in Figure 3 is bounded by the curve \(C\), the line \(x = \sqrt { 3 }\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  3. Find the volume of the solid of revolution, giving your answer in the form \(p \pi \sqrt { 3 } + q \pi ^ { 2 }\), where \(p\) and \(q\) are constants. \includegraphics[max width=\textwidth, alt={}, center]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-39_61_29_2608_1886}
Edexcel C34 Specimen Q11
12 marks Standard +0.8
11. A team of conservationists is studying the population of meerkats on a nature reserve. The population is modelled by the differential equation $$\frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { 1 } { 15 } P ( 5 - P ) , \quad t \geqslant 0$$ where \(P\), in thousands, is the population of meerkats and \(t\) is the time measured in years since the study began. Given that when \(t = 0 , P = 1\),
  1. solve the differential equation, giving your answer in the form $$P = \frac { a } { b + c \mathrm { e } ^ { - \frac { 1 } { 3 } t } }$$ where \(a\), \(b\) and \(c\) are integers.
  2. Hence show that the population cannot exceed 5000