5.
$$f ( x ) = \frac { 4 x ^ { 2 } + 5 x + 3 } { ( x + 2 ) ( 1 - x ) ^ { 2 } } \equiv \frac { A } { ( x + 2 ) } + \frac { B } { ( 1 - x ) } + \frac { C } { ( 1 - x ) ^ { 2 } }$$
- Find the values of the constants \(A\), \(B\) and \(C\).
- Hence find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
- Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x\), writing your answer in the form \(p + \ln q\), where \(p\) and \(q\) are constants.
"
◯
| VGHV SIHIN NI III M I ION OC | VIIV SIHI NI JIIIM ION OC | VI4V SIHIL NI JIIYM ION OC |