Edexcel C34 Specimen — Question 2

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
SessionSpecimen
TopicArea Under & Between Curves

2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-04_479_855_310_566} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve and the \(x\)-axis.
  1. Complete the table below with the values of \(y\) corresponding to \(x = \frac { \pi } { 4 }\) and \(x = \frac { \pi } { 2 }\), giving your answers to 5 decimal places.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)08.872070
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of the region \(R\). Give your answer to 4 decimal places. The curve \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\), has a maximum turning point at \(Q\), shown in Figure 1.
  3. Find the \(x\) coordinate of \(Q\).