Edexcel C34 Specimen — Question 4

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
SessionSpecimen
TopicGeneralised Binomial Theorem
TypeTwo unknowns from two coefficient conditions

4. (a) Use the binomial theorem to expand $$( 2 - 3 x ) ^ { - 2 } , \quad | x | < \frac { 2 } { 3 }$$ in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient as a simplified fraction. $$\mathrm { f } ( x ) = \frac { a + b x } { ( 2 - 3 x ) ^ { 2 } } , \quad | x | < \frac { 2 } { 3 } , \quad \text { where } a \text { and } b \text { are constants. }$$ In the binomial expansion of \(\mathrm { f } ( x )\), in ascending powers of \(x\), the coefficient of \(x\) is 0 and the coefficient of \(x ^ { 2 }\) is \(\frac { 9 } { 16 }\) Find
(b) the value of \(a\) and the value of \(b\),
(c) the coefficient of \(x ^ { 3 }\), giving your answer as a simplified fraction.