8.
$$\mathrm { h } ( x ) = \frac { 2 } { x + 2 } + \frac { 4 } { x ^ { 2 } + 5 } - \frac { 18 } { \left( x ^ { 2 } + 5 \right) ( x + 2 ) } , \quad x \geqslant 0$$
- Show that \(\mathrm { h } ( x ) = \frac { 2 x } { x ^ { 2 } + 5 }\)
- Hence, or otherwise, find \(\mathrm { h } ^ { \prime } ( x )\) in its simplest form.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-26_679_1168_733_390}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a graph of the curve with equation \(y = \mathrm { h } ( x )\). - Calculate the range of \(\mathrm { h } ( x )\).