Edexcel C34 2018 October — Question 13

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2018
SessionOctober
TopicDifferential equations

13. The volume of a spherical balloon of radius \(r \mathrm {~m}\) is \(V \mathrm {~m} ^ { 3 }\), where \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\)
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\) Given that the volume of the balloon increases with time \(t\) seconds according to the formula $$\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 20 } { V ( 0.05 t + 1 ) ^ { 3 } } , \quad t \geqslant 0$$
  2. find an expression in terms of \(r\) and \(t\) for \(\frac { \mathrm { d } r } { \mathrm {~d} t }\) Given that \(V = 1\) when \(t = 0\)
  3. solve the differential equation $$\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 20 } { V ( 0.05 t + 1 ) ^ { 3 } }$$ giving your answer in the form \(V ^ { 2 } = \mathrm { f } ( t )\).
  4. Hence find the radius of the balloon at time \(t = 20\), giving your answer to 3 significant figures.
    \includegraphics[max width=\textwidth, alt={}]{c6bde466-61ec-437d-a3b4-84511a98d788-48_2632_1828_121_121}